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Machine learning and data analysis

• Examples here:
– Classification: 2-dimensional data
– Regression: 1-dimensional data

• Machine learning is for high-dimensional data
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From: https://mc.ai/between-
classification-and-regression-
how-to-know-which-is-which/
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High-dimensional learning and big data

• Is this high-dimensional?  Big?  Both?
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High-dimensional learning and big data

• Is this high-dimensional?  Big?  Both?
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High-dimensional, large p, complexity of the problem

big
data,

large n,
abundance

of 
information



Small/large p, n

• Large n (many data)

– Lot of information: always a good point (strong advantage)

– Might lead to slow algorithms/computation (weak drawback)

– Many applications do not come with many data! (medical records, 
time series, costly labels,…)

• Large p (many features)

– Sensors and storage are easy and cheap

– Curse of dimensionality

– Useless features deteriorate learning
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Machine learning
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From: Barbara Hammer, Machine learning in 
the wild, plenary talk at WCCI 2020
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Machine learning
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From: Barbara Hammer, Machine learning in 
the wild, plenary talk at WCCI 2020
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Outline

• High-dimensional data analysis

• The curse of dimensionality

• Feature selection

• Nonlinear dimensionality reduction

• Other small n, large p issues in machine learning

• Conclusion

IJCCI - PECCS 2020 Machine learning with limited-size datasets 10



Machine learning with limited-size datasets 11

High-dimensional data analysis

• Traditional data

Analysis

Models

number of
variables or features

number of 
observations
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High-dimensional data analysis

• High-dimensional data

When I find myself 
in times of trouble 
Mother Mary 
comes to me 
Speaking words of 
wisdom, let it be.
…

When 1

Times 1

Trouble 1

Let 65

wisdom 1

Analysis

Models

number of
variables or features

number of 
observations

http://images.google.be/imgres?imgurl=www.cephbase.dal.ca/graphics/tree.jpg&imgrefurl=http://www.cephbase.dal.ca/spdb/spdb.cfm&h=257&w=205&prev=/images?q=tree&svnum=10&hl=fr&lr=&ie=UTF-8&oe=UTF-8&sa=G


High-dimensional data and intuition

2D
 Situations we can

imagine, represent, 
draw

 Strong intuition of 
how the tools behave

 Consider cases where
#data >> p
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High-dimensional data and intuition

2D

• HD data
or
•

 Situations we can
imagine, represent, 
draw

 No representation

 Strong intuition of 
how the tools behave

 No intuition

 Consider cases where
#observations >> ep

 Often
#observations << ep

lim
𝑝𝑝→∞

. . .
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Link between p and n

• Consider a simple classification algorithm (here in dimension 2=p):
– split the space into boxes
– decide the class of a box (here the colour) according to the majority class 

of the data in the box
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classification

this part of the 
data space is 
marked as red
because it 
contains more red 
data than from 
any other class



Link between p and n

• What about the size and number
of boxes ?

• Size: related to the accuracy of the
algorithm

• Number: at equal size the number of
boxes grows exponentially with the
dimension p of the space

• And of course boxes must be 
populated with a sufficient number of data

• → Number of data n should grow exponentially with dimension p
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Link between p and n

• In practice:

Number of data n should grow exponentially with dimension p

is not realistic…
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Link between p and n

• In practice:

Number of data n should grow exponentially with dimension p

is not realistic…

• Hopefully real data have a structure:
this is not really 3-D data

• Data without structure do not
contain information!
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From: 
https://www.kdnuggets.com/20
15/01/yoshua-bengio-
unsupervised-learning-robust-
adversarial-distortions.html



Outline

• High-dimensional data analysis

• The curse of dimensionality

• Feature selection

• Nonlinear dimensionality reduction

• Other small n, large p issues in machine learning

• Conclusion
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Curse of dimensionality

• Example: Silverman (1986)
Number of Gaussian kernels necessary to approximate a 
(Gaussian) distribution in dimension p
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# kernels
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Surprizing facts: sphere

• Volume of “sphere” of constant radius (=1) in dimension p

• A “sphere” is: a segment (p=1)
a circle (p=2)
a sphere (p=3)
a hypershere (p>3)
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Surprizing facts: sphere

• Volume of “sphere” of constant radius (=1) in dimension p

• A “sphere” is: a segment (p=1)
a circle (p=2)
a sphere (p=3)
a hypershere (p>3)
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• Another view of high-DIM Gaussian distributions:

– Probability to find a point at distance r from the center of a DIM-
dimensional multinormal distribution

r

Surprizing facts: Gaussians
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• Another view of high-DIM Gaussian distributions:

– Probability to find a point at distance r from the center of a DIM-
dimensional multinormal distribution
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Surprizing facts: Gaussians
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d = 2 d = 50
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Concentration of the Euclidean norm

• Let’s compute the norm of random vectors in a cube

• Distribution of the norm of random vectors

• Norms concentrate around their expectation
• They don’t discriminate anymore ! (remember that many machine 

learning algorithms are based on distances between data, or norms)

1
1

1origin

Data (not shown): 
i.i.d. components in [0,1]



Outline

• High-dimensional data analysis

• The curse of dimensionality

• Feature selection

• Nonlinear dimensionality reduction

• Other small n, large p issues in machine learning

• Conclusion
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Feature selection reduces p, keeps n

Feature selection: the 𝑥𝑥𝑥𝑖𝑖 features are among the original set 𝑥𝑥𝑗𝑗

Original features are preserved → interpretability as well
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Feature selection reduces p, keeps n

• Feature selection keeps some features among the original ones:
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Why feature selection ?

Three good reasons for feature selection:

1. improve the models
– reduces p, keeps n: good for learning (whatever is the model)

2. explain the features
– many applications require insights about the features (biomarkers, 

costly sensors, …)

3. visualize data
– visualization is mostly restricted to 2-D or 3-D data
– visualization is an essential part of a data analysis process
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Univariate versus multivariate feature selection

• Univariate FS: 
each original feature is evaluated independently from the other ones
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Univariate versus multivariate feature selection

• Multivariate FS: 
each original feature is evaluated conditionally to other ones
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Univariate versus multivariate feature selection

• Multivariate FS: 
each original feature is evaluated conditionally to other ones

• Multivariate FS makes it possible to detect features that contribute 
together to y, but not individually (ex: 𝑦𝑦 = 𝑥𝑥1 ⊕ 𝑥𝑥2)
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Filters versus wrappers feature selection
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Not the final quality criterion !

Many (non)linear models to design!
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Filters/wrappers – univariate/multivariate

Filters Wrappers

Univariate Use only if p huge
(so huge that any other approach won’t work)

Multivariate Only for moderate final p
(otherwise the feature selection itself is difficult 
because of the curse of dimensionality)
• Model agnostic 

(ideal for feature 
interpretation)

• Moderate computational 
load 

• Ideal performances for 
specific model

• High computational 
load
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Common mistake in literature: filters ≠ univariate !



Multivariate feature selection

The two ingredients of feature selection:

1. a criterion to evaluate subsets of features
– wrappers: the model itself
– filters: a.o. mutual information

2. a subset selection method
– 2𝑝𝑝 − 1 possible subsets: intractable if 𝑝𝑝 is huge
– need to try only some of the 2𝑝𝑝 − 1 possible subsets
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1. criterion

• Correlation is really a bad idea…
– it does not see nonlinear relations 

(ex.: correlation between 𝑥𝑥 and 𝑥𝑥2 is zero…)
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𝑥𝑥

𝑥𝑥2
• There is a clear relation

• However the correlation
is 0



1. criterion

• Correlation is really a bad idea…
– it does not see nonlinear relations 

(ex.: correlation between 𝑥𝑥 and 𝑥𝑥2 is zero…)

– it is not multivariate
(what is the correlation between 𝑦𝑦 and 𝑥𝑥1, 𝑥𝑥7, 𝑥𝑥13 ?)

IJCCI - PECCS 2020 Machine learning with limited-size datasets 38



1. criterion

• Correlation is really a bad idea…
– it does not see nonlinear relations 

(ex.: correlation between 𝑥𝑥 and 𝑥𝑥2 is zero…)

– it is not multivariate
(what is the correlation between 𝑦𝑦 and 𝑥𝑥1, 𝑥𝑥7, 𝑥𝑥13 ?)

– it is extremely sensitive to outliers
(equivalent to linear regression, based on squared distances or errors)
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– it does not see nonlinear relations 

(ex.: correlation between 𝑥𝑥 and 𝑥𝑥2 is zero…)

– it is not multivariate
(what is the correlation between 𝑦𝑦 and 𝑥𝑥1, 𝑥𝑥7, 𝑥𝑥13 ?)

– it is extremely sensitive to outliers
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1. criterion

• Correlation is really a bad idea…
– it does not see nonlinear relations 

(ex.: correlation between 𝑥𝑥 and 𝑥𝑥2 is zero…)

– it is not multivariate
(what is the correlation between 𝑦𝑦 and 𝑥𝑥1, 𝑥𝑥7, 𝑥𝑥13 ?)

– it is extremely sensitive to outliers
(equivalent to linear regression, based on squared distances or errors)

– it is not causal
(ex.: the high correlation between the number of murders and churches 
in US towns is due to…the size of the town)
(other ex., more funny: civil engineering doctorate awarded wrt
consumption of mozzarella cheese: )
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1. criterion

• Correlation is really a bad idea…
– it does not see nonlinear relations 

(ex: correlation between 𝑥𝑥 and 𝑥𝑥2 is zero…)

– it is not multivariate
(what is the correlation between 𝑦𝑦 and 𝑥𝑥1, 𝑥𝑥7, 𝑥𝑥13 ?)

– it is extremely sensitive to outliers
(equivalent to linear regression, based on squared distances or errors)

– it is not causal
(ex: the high correlation between the number of murders and churches 
in US towns is due to…the size of the town)

• Mutual information is a much better idea !
– it solves the three first issues

– however it must be estimated from the data, which is itself a HD problem
(but here HD relates to the final set of features, not the initial one)
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1. criterion: mutual information

• Mutual information in a nutshell

• Difference between the entropy of 𝑦𝑦 (uncertainty on the prediction) 
and the entropy of 𝑦𝑦 when 𝑥𝑥 is known

• Measures how much 𝑥𝑥 gives information about 𝑦𝑦

• Example:
– 𝑥𝑥 and 𝑧𝑧 uniformly distributed over [-1 1]
– 𝑧𝑧 is independent from 𝑥𝑥
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𝐼𝐼 𝑦𝑦 ; 𝑥𝑥 = 𝐻𝐻 𝑦𝑦 − 𝐻𝐻 𝑦𝑦|𝑥𝑥 = 𝐻𝐻 𝑥𝑥 − 𝐻𝐻 𝑥𝑥|𝑦𝑦

𝑥𝑥

𝑥𝑥2

𝒙𝒙𝟐𝟐;𝒙𝒙𝟐𝟐 𝑥𝑥;𝒙𝒙𝟐𝟐 𝑧𝑧;𝒙𝒙𝟐𝟐

Correlation 1 0.05 0.05

Mutual information 2.26 1.20 0.01

no difference

clear difference



1. criterion: mutual information

• 𝑥𝑥 can be a set of features (multivariate criterion!)

• The difficulty is in the estimation of 𝐼𝐼 (𝑦𝑦; 𝑥𝑥):
– The estimators also suffer from the curse of dimensionality!
– The subset selection method should be limited to the final number of 

features, not the initial number
(ex.: bioinformatics, selection of 50 genes among 50.000)

• Mutual information is not limited to a fixed interval such as −1,1
– it is limited by the entropies of 𝑥𝑥 and 𝑦𝑦, which are generally unknown.
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2. feature subset selection method

• In theory: just try 2𝑝𝑝 − 1 subsets and evaluate them...
– Evaluation: mutual information (filters), or model itself (wrapper)
– just imagine for 𝑝𝑝 = 200 

• In practice: greedy procedure
– Define an intial subset
– Choose a strategy to update subset
– Decide when to stop

IJCCI - PECCS 2020
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2. feature subset selection method

• In theory: just try 2p-1 subsets and evaluate them...
– Evaluation: mutual information (filters), or model itself (wrapper)
– just imagine for d=200   

• In practice: greedy procedure
– Define an intial subset
– Choose a strategy to update subset
– Decide when to stop

• Example with 4 features:
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2. feature subset selection method

• This is the forward search:

• Backward search: start from the full set of features
– better to detect dependencies
– very bad is initial p is too big (estimation problem)

• Other search methods:
– forward-backward
– MRMR (limited to 2-D estimations, pairs of features only)
– genetic algorithms
– …
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Feature selection example

• Dataset origin: StatLib library, Carnegie Mellon Univ.
• Concerns housing values in suburbs of Boston
• Attributes:

1. CRIM      per capita crime rate by town
2. ZN        proportion of residential land zoned for lots over 25,000 sq.ft.
3. INDUS     proportion of non-retail business acres per town
4. CHAS   Charles River dummy variable (= 1 if tract bounds river, 0 otherw.)
5. NOX       nitric oxides concentration (parts per 10 million)
6. RM        average number of rooms per dwelling
7. AGE       proportion of owner-occupied units built prior to 1940
8. DIS       weighted distances to five Boston employment centres
9. RAD       index of accessibility to radial highways
10.TAX      full-value property-tax rate per $10,000
11.PTRATIO  pupil-teacher ratio by town
12.B        1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
13.LSTAT    % lower status of the population
14.MEDV     Median value of owner-occupied homes in $1000's
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Feature selection example

• Forward selection with MI:
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Feature selection example

• Forward selection with MI:
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Feature selection example

• Forward selection with MI:
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selected first



Feature selection example

• Forward selection with MI:
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set with features
#6 and #3

and so on…

in theory: should never decrease

in practice: limitation of estimator

feature #6 is
selected first



Outline

• High-dimensional data analysis

• The curse of dimensionality

• Feature selection

• Nonlinear dimensionality reduction

• Other small n, large p issues in machine learning

• Conclusion
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Nonlinear dimensionality reduction

• Think flattening a 3D surface 
to a 2D image

– Simple projection

– Preserving some particular
quantity of interest locally

– Preserving some global
property of the surface
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From Ryan B. Harvey, Methods of manifold 
learning for dimension reduction of large 
datasets, PhD oral exam, 2010



Nonlinear dimensionality reduction
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Dimension reduction: features 𝑥𝑥𝑥𝑖𝑖 are built from the original set 𝑥𝑥𝑗𝑗
(Feature selection: features 𝑥𝑥𝑥𝑖𝑖 are among the original set 𝑥𝑥𝑗𝑗 )

≡

x1

xp

y

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
⋮
𝑥𝑥𝑝𝑝

x1

xd

y
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
⋮
𝑥𝑥𝑝𝑝

dimension 
reduction

d < p

𝑥𝑥′1
𝑥𝑥′2
𝑥𝑥′3
⋮
𝑥𝑥′𝑑𝑑



NLDR history

• Principal component analysis (PCA) 1901
• Classical metric multidimensional scaling (MDS) 1938
• Stress-based MDS 1952
• Nonmetric MDS 1962
• Sammon mapping 1969
• Self-organizing map 1982
• Principal curves 1984
• Auto-encoder (bottleneck FFN) 1991
• Curvilinear component analysis 1993
• Spectral methods

– Kernel PCA 1996
– Isomap 1998
– Locally linear embedding 2000
– Laplacian eigenmaps 2002
– Maximum variance unfolding 2004

• Deep auto-encoder 2006
• Similarity-based embedding

– (t-distributed) stochastic neighbor embedding 2008
– Neignbor retrieval and visualization (NeRV) 2010

• etc.
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PCA, PDS

• PCA (Principal Component Analysis), and
MDS (classical MultiDimensional Scaling)
preserve distances

• Nice and intuitive, but…
– intuitively, local distances are much more interesting to preserve than 

distances between far away data
– preserving distances does not allow to unfold

IJCCI - PECCS 2020 Machine learning with limited-size datasets 58

min
𝑋𝑋

�
𝑖𝑖<𝑗𝑗

𝛿𝛿𝑖𝑖𝑖𝑖2 − 𝑑𝑑𝑖𝑖𝑖𝑖2
2

where
𝛿𝛿𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗 are the distances in the original space
𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗 are the distances in the projection space



weighted distances, and similarities

• Weighting by inverse distances concentrates of locality

• There is a compromise between intrusions and extrusions
– intrusions: linear projection, PCA”flattens” distributions
– extrusions: close data will not be projected close

IJCCI - PECCS 2020 Machine learning with limited-size datasets 59

𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁 = �
𝑖𝑖=1
𝑖𝑖<𝑗𝑗

𝑁𝑁
𝛿𝛿𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑖𝑖𝑖𝑖

2

𝛿𝛿𝑖𝑖𝑖𝑖
𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶 = �

𝑖𝑖=1
𝑖𝑖<𝑗𝑗

𝑁𝑁
𝛿𝛿𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑖𝑖𝑖𝑖

2

𝑑𝑑𝑖𝑖𝑖𝑖



curvilinear distances

• Goal: to measure distances along the manifold
• Such distances are more easily preserved when unfolding

• Weighting and curvilinear distances may be combined !
(see for example Curvilinear Distance Analysis) 
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similarities

• Examples
– t-distributed SNE (2008)
– Neighbour retrieval and visualisation (NeRV, 2010)

• Ingredients
– Softmax similarities:

– Allows to introduce hypotheses on the distribution of distances 
(remember the concentration of distances!)

– Similarity preservation (sum of KL divergences):
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similarities

• t-SNE and similar methods: depend on a “scale” parameter that 
defines how far similarities are considered

• possibility to integrate into “multi-scale t-SNE”: no more parameter!

Multiscale stochastic neighbor embedding: Towards parameter-free dimensionality reduction
John A. Lee et al., ESANN 2014
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Image banks
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L. Van der Maaten, 2012



Image banks
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About the evaluation

• Feature selection and dimensionality reduction are 
unsupervised processes
→ evaluation not so easy

• Feature selection and dimensionality reduction 
– may be evaluated by the quality of the model (on the selected features)
– but what about feature discovery, visualization,…

• Nonlinear dimensionality reduction
– evaluation by neighbourhood preservation
Quality assessment of dimensionality reduction: Rank-based criteria
John A. Lee & Michel Verleysen, Neurocomputing, Volume 72, Issues 7–9, March 2009, Pages 1431-
1443
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Outline

• High-dimensional data analysis

• The curse of dimensionality

• Feature selection

• Nonlinear dimensionality reduction

• Other small n, large p issues in machine learning

• Conclusion
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Other small n large p issues

• few data are labelled, lots of data are unlabelled
ex.: medical data, images, etc. costly to label
→ semi-supervised learning

• few good data, many similar but not identical data
ex.: many “old” data, few recent ones, non-stationary process
→ transfer learning

• missing data
ex.: out of order sensors, successive medical tests,…
→ data completion or (better) models robust to outliers

• still too few data
→ data generation, oversampling, GAN networks,…
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Take-home messages

• Machine learning is not only about big data and deep learning

• Many real-world domains do not provide big data, still they are 
interesting

• Model-based learning is a fascinating and still very open field (of 
research and application)

• Do not underestimate the need to understand data (in addition to 
building good models)
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