Machine learning with limited-size datasets

Michel Verleysen Machine Learning Group Université catholique de Louvain Louvain-la-Neuve, Belgium michel.verleysen@uclouvain.be

Machine learning and data analysis

- Examples here:
 - Classification: 2-dimensional data
 - Regression: 1-dimensional data
- Machine learning is for *high*-dimensional data

• Is this high-dimensional? Big? Both?

GP	СМР	ATT	СМР%	YDS	AVG	TD	LNG	INT	FUM	QBR	RAT
3	9	16	56.3	65	4.06	0	16	1	2		39.8
2	6	15	40.0	46	3.07	0	16	0	1	7.8	48.2
2	20	28	71.4	218	7.79	1	43	0	0	78.0	106.0
16	341	536	63.6	4,038	7.53	28	71	13	6	64.4	93.8
16	350	541	64.7	4,434	8.20	30	83	7	8	70.7	103.2
15	312	475	65.7	3,922	8.26	28	86	11	2	69.2	101.2
15	343	502	68.3	4,643	9.25	45	93	6	4	84.5	122.5
16	371	552	67.2	4,295	7.78	39	73	8	5	71.2	108.0
9	193	290	66.6	2,536	8.75	17	83	6	3	60.6	104.9
16	341	520	65.6	4,381	8.43	38	80	5	7	78.3	112.2
16	347	572	60.7	3,821	6.68	31	65	8	8	60.3	92.7
16	401	610	65.7	4,428	7.26	40	66	7	4	73.8	104.2
6	128	193	66.3	1,385	7.18	13	72	3	1	62.6	103.2

• Is this high-dimensional? Big? Both?

	-											\rightarrow
	GP	CMP	ATT	CMD0/a	VDS	AVG	TD	LNG	TNT	EUM	OBP	PAT
•	3	9	16	56.3	65	4.06	0	16	1	2	QDK	39.8
	2	6	15	40.0	46	3.07	0	16	0	1	7.8	48.2
	2	20	28	71.4	218	7.79	1	43	0	0	78.0	106.0
	16	341	536	63.6	4,038	7.53	28	71	13	6	64.4	93.8
big	16	350	541	64.7	4,434	8.20	30	83	7	8	70.7	103.2
data	15	312	475	65.7	3,922	8.26	28	86	11	2	69.2	101.2
	15	343	502	68.3	4,643	9.25	45	93	6	4	84.5	122.5
	16	371	552	67.2	4,295	7.78	39	73	8	5	71.2	108.0
	9	193	290	66.6	2,536	8.75	17	83	6	3	60.6	104.9
	16	341	520	65.6	4,381	8.43	38	80	5	7	78.3	112.2
	16	347	572	60.7	3,821	6.68	31	65	8	8	60.3	92.7
	16	401	610	65.7	4,428	7.26	40	66	7	4	73.8	104.2
	6	128	193	66.3	1,385	7.18	13	72	3	1	62.6	103.2

High-dimensional

• Is this high-dimensional? Big? Both?

High-dimensional, large p

	←											\rightarrow
	GP	СМР	ATT	СМР%	YDS	AVG	TD	LNG	INT	FUM	QBR	RAT
	3	9	16	56.3	65	4.06	0	16	1	2		39.8
	2	6	15	40.0	46	3.07	0	16	0	1	7.8	48.2
	2	20	28	71.4	218	7.79	1	43	0	0	78.0	106.0
bia	16	341	536	63.6	4,038	7.53	28	71	13	6	64.4	93.8
DIG	16	350	541	64.7	4,434	8.20	30	83	7	8	70.7	103.2
data,	15	312	475	65.7	3,922	8.26	28	86	11	2	69.2	101.2
large n	15	343	502	68.3	4,643	9.25	45	93	6	4	84.5	122.5
	16	371	552	67.2	4,295	7.78	39	73	8	5	71.2	108.0
	9	193	290	66.6	2,536	8.75	17	83	6	3	60.6	104.9
	16	341	520	65.6	4,381	8.43	38	80	5	7	78.3	112.2
	16	347	572	60.7	3,821	6.68	31	65	8	8	60.3	92.7
	16	401	610	65.7	4,428	7.26	40	66	7	4	73.8	104.2
	6	128	193	66.3	1,385	7.18	13	72	3	1	62.6	103.2

• Is this high-dimensional? Big? Both?

High-dimensional, large *p*, complexity of the problem

1	GP	СМР	ATT	СМР%	YDS	AVG	TD	LNG	INT	FUM	QBR	RAT
	3	9	16	56.3	65	4.06	0	16	1	2		39.8
	2	6	15	40.0	46	3.07	0	16	0	1	7.8	48.2
	2	20	28	71.4	218	7.79	1	43	0	0	78.0	106.0
hia	16	341	536	63.6	4,038	7.53	28	71	13	6	64.4	93.8
big	16	350	541	64.7	4,434	8.20	30	83	7	8	70.7	103.2
data,	15	312	475	65.7	3,922	8.26	28	86	11	2	69.2	101.2
large n,	15	343	502	68.3	4,643	9.25	45	93	6	4	84.5	122.5
abundance	16	371	552	67.2	4,295	7.78	39	73	8	5	71.2	108.0
of	9	193	290	66.6	2,536	8.75	17	83	6	3	60.6	104.9
information	16	341	520	65.6	4,381	8.43	38	80	5	7	78.3	112.2
	16	347	572	60.7	3,821	6.68	31	65	8	8	60.3	92.7
	16	401	610	65.7	4,428	7.26	40	66	7	4	73.8	104.2
↓	6	128	193	66.3	1,385	7.18	13	72	3	1	62.6	103.2

Small/large p, n

- Large *n* (many data)
 - Lot of information: <u>always</u> a good point (strong advantage)
 - Might lead to slow algorithms/computation (weak drawback)
 - Many applications do not come with many data! (medical records, time series, costly labels,...)
- Large p (many features)
 - Sensors and storage are easy and cheap
 - Curse of dimensionality
 - Useless features deteriorate learning

Machine learning

Machine learning

Outline

- High-dimensional data analysis
- The curse of dimensionality
- Feature selection
- Nonlinear dimensionality reduction
- Other small *n*, large *p* issues in machine learning
- Conclusion

High-dimensional data analysis

High-dimensional data analysis

• High-dimensional data

High-dimensional data and intuition

 Situations we can imagine, represent, draw

 Strong intuition of how the tools behave

Consider cases where
 #data >> p

High-dimensional data and intuition

- Situations we can imagine, represent, draw
- No representation
- Strong intuition of how the tools behave
- No intuition
- Consider cases where
 #observations >> e[#]
- Often
 #observations << e^p

- Consider a simple classification algorithm (here in dimension 2=p):
 - split the space into boxes
 - decide the class of a box (here the colour) according to the majority class of the data in the box

- What about the size and number of boxes ?
- Size: related to the accuracy of the algorithm
- Number: at equal size the number of boxes grows exponentially with the dimension p of the space
- And of course boxes must be populated with a sufficient number of data
- \rightarrow Number of data *n* should grow exponentially with dimension *p*

• In practice:

Number of data *n* should grow exponentially with dimension *p*

is not realistic...

• In practice:

Number of data *n* should grow exponentially with dimension *p*

is not realistic...

- Hopefully real data have a structure: this is not really 3-D data
- Data without structure do not contain information!

From: https://www.kdnuggets.com/20 15/01/yoshua-bengiounsupervised-learning-robustadversarial-distortions.html

Outline

- High-dimensional data analysis
- The curse of dimensionality
- Feature selection
- Nonlinear dimensionality reduction
- Other small *n*, large *p* issues in machine learning
- Conclusion

Curse of dimensionality

 Example: Silverman (1986) Number of Gaussian kernels necessary to approximate a (Gaussian) distribution in dimension p

kernels

Surprizing facts: sphere

- Volume of "sphere" of constant radius (=1) in dimension p
- A "sphere" is: a segment (p=1)

 a circle (p=2)
 a sphere (p=3)
 a hypershere (p>3)

Surprizing facts: sphere

- Volume of "sphere" of constant radius (=1) in dimension p
- A "sphere" is: a segment (p=1)

 a circle (p=2)
 a sphere (p=3)
 a hypershere (p>3)

Surprizing facts: Gaussians

- Another view of high-DIM Gaussian distributions:
 - Probability to find a point at distance *r* from the center of a DIMdimensional multinormal distribution

Surprizing facts: Gaussians

- Another view of high-DIM Gaussian distributions:
 - Probability to find a point at distance *r* from the center of a DIMdimensional multinormal distribution

Surprizing facts: Gaussians

- Another view of high-DIM Gaussian distributions:
 - Probability to find a point at distance *r* from the center of a DIMdimensional multinormal distribution

Concentration of the Euclidean norm

• Let's compute the norm of random vectors in a cube

Data (not shown): i.i.d. components in [0,1]

• Distribution of the norm of random vectors

- Norms concentrate around their expectation
- They don't discriminate anymore ! (remember that many machine learning algorithms are based on distances between data, or norms)

Outline

- High-dimensional data analysis
- The curse of dimensionality
- Feature selection
- Nonlinear dimensionality reduction
- Other small *n*, large *p* issues in machine learning
- Conclusion

Feature selection reduces *p*, keeps *n*

Feature selection: the x'_i features are *among* the original set $\{x_i\}$

Original features are preserved \rightarrow interpretability as well

Feature selection reduces *p*, keeps *n*

• Feature selection keeps some features among the original ones:

GP	СМР	ATT	СМР%	YDS	AVG	TD	LNG	INT	FUM	QBR	RAT
3	9	16	56.3	65	4.06	0	16	1	2		39.8
2	6	15	40.0	46	3.07	0	16	0	1	7.8	48.2
2	20	28	71.4	218	7.79	1	43	0	0	78.0	106.0
16	341	536	63.6	4,038	7.53	28	71	13	6	64.4	93.8
16	350	541	64.7	4,434	8.20	30	83	7	8	70.7	103.2
15	312	475	65.7	3,922	8.26	28	86	11	2	69.2	101.2
15	343	502	68.3	4,643	9.25	45	93	6	4	84.5	122.5
16	371	552	67.2	4,295	7.78	39	73	8	5	71.2	108.0
9	193	290	66.6	2,536	8.75	17	83	6	3	60.6	104.9
16	341	520	65.6	4,381	8.43	38	80	5	7	78.3	112.2
16	347	572	60.7	3,821	6.68	31	65	8	8	60.3	92.7
16	401	610	65.7	4,428	7.26	40	66	7	4	73.8	104.2
6	128	193	66.3	1,385	7.18	13	72	3	1	62.6	103.2

Why feature selection ?

Three good reasons for feature selection:

- 1. improve the models
 - reduces p, keeps n: good for learning (whatever is the model)
- 2. explain the features
 - many applications require insights about the features (biomarkers, costly sensors, ...)
- 3. visualize data
 - visualization is mostly restricted to 2-D or 3-D data
 - visualization is an essential part of a data analysis process

Univariate versus multivariate feature selection

• Univariate FS:

each original feature is evaluated independently from the other ones

Univariate versus multivariate feature selection

• Multivariate FS:

each original feature is evaluated conditionally to other ones

• Multivariate FS:

each original feature is evaluated conditionally to other ones

• Multivariate FS makes it possible to detect features that contribute together to y, but not individually (ex: $y = x_1 \oplus x_2$)

Filters versus wrappers feature selection

Filters/wrappers – univariate/multivariate

	Filters	Wrappers				
Univariate	Use only if <i>p</i> huge (so huge that any other app	roach won't work)				
Multivariate	Only for moderate <u>final</u> p (otherwise the feature select because of the curse of dime	tion itself is difficult ensionality)				
	 Model agnostic (ideal for feature interpretation) Moderate computational load 	 Ideal performances for specific model High computational load 				

Common mistake in literature: filters \neq univariate !

Multivariate feature selection

The two ingredients of feature selection:

- 1. a criterion to evaluate subsets of features
 - wrappers: the model itself
 - filters: a.o. mutual information
- 2. a subset selection method
 - $2^p 1$ possible subsets: intractable if p is huge
 - need to try only some of the $2^p 1$ possible subsets

- Correlation is really a bad idea...
 - it does not see nonlinear relations
 (ex.: correlation between x and x² is zero...)

- There is a clear relation
- However the correlation is 0

- Correlation is really a bad idea...
 - it does not see nonlinear relations
 (ex.: correlation between x and x² is zero...)
 - it is not multivariate
 (what is the correlation between y and {x₁, x₇, x₁₃} ?)

- Correlation is really a bad idea...
 - it does not see nonlinear relations
 (ex.: correlation between x and x² is zero...)
 - it is not multivariate
 (what is the correlation between y and {x₁, x₇, x₁₃} ?)
 - it is extremely sensitive to outliers (equivalent to linear regression, based on <u>squared</u> distances or errors)

- Correlation is really a bad idea...
 - it does not see nonlinear relations
 (ex.: correlation between x and x² is zero...)
 - it is not multivariate (what is the correlation between y and $\{x_1, x_7, x_{13}\}$?)
 - it is extremely sensitive to outliers (equivalent to linear regression, based on squared distances or errors)
 - it is not causal (ex.: the high correlation between the number of murders and churches in US towns is due to...the size of the town)

- Correlation is really a bad idea...
 - it does not see nonlinear relations
 (ex.: correlation between x and x² is zero...)
 - it is not multivariate
 (what is the correlation between y and {x₁, x₇, x₁₃} ?)
 - it is extremely sensitive to outliers (equivalent to linear regression, based on <u>squared</u> distances or errors)
 - it is not causal

(ex.: the high correlation between the number of murders and churches in US towns is due to...the size of the town) (other ex., more funny: civil engineering doctorate awarded wrt consumption of mozzarella cheese:)

- Correlation is really a bad idea...
 - it does not see nonlinear relations
 (ex: correlation between x and x² is zero...)
 - it is not multivariate
 (what is the correlation between y and {x₁, x₇, x₁₃} ?)
 - it is extremely sensitive to outliers (equivalent to linear regression, based on <u>squared</u> distances or errors)
 - it is not causal (ex: the high correlation between the number of murders and churches in US towns is due to...the size of the town)
- Mutual information is a much better idea !
 - it solves the three first issues
 - however it must be estimated from the data, which is itself a HD problem (but here HD relates to the final set of features, not the initial one)

1. criterion: mutual information

Mutual information in a nutshell

$$I(y;x) = H(y) - H(y|x) = H(x) - H(x|y)$$

- Difference between the entropy of *y* (uncertainty on the prediction) and the entropy of *y* when *x* is known
- Measures how much *x* gives information about *y*
- Example:
 - x and z uniformly distributed over [-1 1]
 - z is independent from x

	$x^2; x^2$	<i>x</i> ; <i>x</i> ²	$z; x^2$	
Correlation	1	0.05	0.05	no difference
Mutual information	2.26	1.20	0.01	clear difference

1. criterion: mutual information

I(y; x) = H(y) - H(y|x) = H(x) - H(x|y)

- *x* can be *a set* of features (multivariate criterion!)
- The difficulty is in the *estimation* of *I* (*y*; *x*):
 - The estimators also suffer from the curse of dimensionality!
 - The subset selection method should be limited to the *final* number of features, not the *initial* number
 (ex.: bioinformatics, selection of 50 genes among 50.000)
- Mutual information is not limited to a fixed interval such as [-1,1]
 - it is limited by the entropies of x and y, which are generally unknown.

- In theory: just try $2^p 1$ subsets and evaluate them...
 - Evaluation: mutual information (filters), or model itself (wrapper)
 - just imagine for p = 200 \odot
- In practice: greedy procedure
 - Define an intial subset
 - Choose a strategy to update subset
 - Decide when to stop

- In theory: just try 2^{*p*}-1 subsets and evaluate them...
 - Evaluation: mutual information (filters), or model itself (wrapper)
 - just imagine for d=200 \odot
- In practice: greedy procedure
 - Define an intial subset

- In theory: just try 2^{*p*}-1 subsets and evaluate them...
 - Evaluation: mutual information (filters), or model itself (wrapper)
 - just imagine for d=200 \odot
- In practice: greedy procedure
 - Define an intial subset

- Backward search: start from the full set of features
 - better to detect dependencies
 - very bad is initial p is too big (estimation problem)
- Other search methods:
 - forward-backward
 - MRMR (limited to 2-D estimations, pairs of features only)
 - genetic algorithms

- ...

- Dataset origin: StatLib library, Carnegie Mellon Univ.
- Concerns housing values in suburbs of Boston
- Attributes:
 - 1. CRIM per capita crime rate by town
 - 2. ZN proportion of residential land zoned for lots over 25,000 sq.ft.
 - 3. INDUS proportion of non-retail business acres per town
 - 4. CHAS Charles River dummy variable (= 1 if tract bounds river, 0 otherw.)
 - 5. NOX nitric oxides concentration (parts per 10 million)
 - 6. RM average number of rooms per dwelling
 - 7. AGE proportion of owner-occupied units built prior to 1940
 - 8. DIS weighted distances to five Boston employment centres
 - 9. RAD index of accessibility to radial highways
 - 10.TAX full-value property-tax rate per \$10,000
 - 11.PTRATIO pupil-teacher ratio by town
 - 12.B 1000(Bk 0.63)^2 where Bk is the proportion of blacks by town
 - 13.LSTAT % lower status of the population
 - 14.MEDV Median value of owner-occupied homes in \$1000's

• Forward selection with MI:

in theory: should never decrease

in practice: limitation of estimator

Outline

- High-dimensional data analysis
- The curse of dimensionality
- Feature selection
- Nonlinear dimensionality reduction
- Other small *n*, large *p* issues in machine learning
- Conclusion

Nonlinear dimensionality reduction

- Think flattening a 3D surface to a 2D image
 - Simple projection
 - Preserving some particular quantity of interest locally
 - Preserving some global property of the surface

From Ryan B. Harvey, Methods of manifold learning for dimension reduction of large datasets, PhD oral exam, 2010

Nonlinear dimensionality reduction

Dimension reduction: features x'_i are *built from* the original set $\{x_j\}$ (Feature selection: features x'_i are *among* the original set $\{x_j\}$)

NLDR history

•	Principal component analysis (PCA)	1901	
•	Classical metric multidimensional scaling (MDS)	1938	
•	Stress-based MDS	1952	
•	Nonmetric MDS	1962	
•	Sammon mapping	1969	
•	Self-organizing map	1982	
•	Principal curves	1984	
•	Auto-encoder (bottleneck FFN)	1991	
•	Curvilinear component analysis	1993	
•	Spectral methods		
	– Kernel PCA	1996	
	– Isomap	1998	
	 Locally linear embedding 	2000	
	 Laplacian eigenmaps 	2002	
	 Maximum variance unfolding 	2004	
•	Deep auto-encoder	2006	
•	Similarity-based embedding		
	 (t-distributed) stochastic neighbor embedding 	2008	
	 Neignbor retrieval and visualization (NeRV) 	2010	
•	etc.		

PCA, PDS

 PCA (Principal Component Analysis), and MDS (classical MultiDimensional Scaling) preserve distances

$$\min_{X} \sum_{i < j} (\delta_{ij}^2 - d_{ij}^2)^2 \qquad \text{where } \frac{\delta_{ij} = \|y_i - y_j\| \text{ are the distances in the original space}}{d_{ij} = \|x_i - x_j\| \text{ are the distances in the projection space}}$$

- Nice and intuitive, but...
 - intuitively, local distances are much more interesting to preserve than distances between far away data
 - preserving distances does not allow to unfold

weighted distances, and similarities

$$E_{NLM} = \sum_{\substack{i=1\\i < j}}^{N} \frac{\left(\delta_{ij} - d_{ij}\right)^{2}}{\delta_{ij}} \qquad \qquad E_{CCA} = \sum_{\substack{i=1\\i < j}}^{N} \frac{\left(\delta_{ij} - d_{ij}\right)^{2}}{d_{ij}}$$

- Weighting by inverse distances concentrates of locality
- There is a compromise between intrusions and extrusions
 - intrusions: linear projection, PCA"flattens" distributions
 - extrusions: close data will not be projected close

curvilinear distances

- Goal: to measure distances along the manifold
- Such distances are more easily preserved when unfolding

 Weighting and curvilinear distances may be combined ! (see for example Curvilinear Distance Analysis)

similarities

- Examples
 - t-distributed SNE (2008)
 - Neighbour retrieval and visualisation (NeRV, 2010)
- Ingredients
 - Softmax similarities:

$$\sigma_{ij} = \frac{\exp(-\delta_{ij}^2/(2\lambda_i^2))}{\sum_{k,k\neq i} \exp(-\delta_{ik}^2/(2\lambda_i^2))} \quad \text{and} \quad s_{ij} = \frac{(1+d_{ij}^2)^{-1}}{\sum_{k,l,k\neq l} (1+d_{kl}^2)^{-1}} \quad \text{t-SNE}$$

- Allows to introduce hypotheses on the distribution of distances (remember the concentration of distances!)
- Similarity preservation (sum of KL divergences):

$$E(\mathbf{X}; \Xi, \mathbf{\Lambda}) = \sum_{i} E_{i}(\mathbf{X}; \Xi, \lambda_{i}) = \sum_{i,j} \sigma_{ij} \log(\sigma_{ij}/s_{ij})$$

similarities

- t-SNE and similar methods: depend on a "scale" parameter that defines how far similarities are considered
- possibility to integrate into "multi-scale t-SNE": no more parameter!

Multiscale stochastic neighbor embedding: Towards parameter-free dimensionality reduction John A. Lee et al., ESANN 2014

Image banks

L. Van der Maaten, 2012

Image banks

About the evaluation

- Feature selection and dimensionality reduction are unsupervised processes
 → evaluation not so easy
- Feature selection and dimensionality reduction
 - may be evaluated by the quality of the model (on the selected features)
 - but what about feature discovery, visualization,...
- Nonlinear dimensionality reduction
 - evaluation by neighbourhood preservation
 Quality assessment of dimensionality reduction: Rank-based criteria
 John A. Lee & Michel Verleysen, Neurocomputing, Volume 72, Issues 7–9, March 2009, Pages 1431-1443

Outline

- High-dimensional data analysis
- The curse of dimensionality
- Feature selection
- Nonlinear dimensionality reduction
- Other small *n*, large *p* issues in machine learning
- Conclusion

Other small *n* large *p* issues

- few data are labelled, lots of data are unlabelled ex.: medical data, images, etc. costly to label
 → semi-supervised learning
- few good data, many similar but not identical data ex.: many "old" data, few recent ones, non-stationary process → transfer learning
- missing data
 ex.: out of order sensors, successive medical tests,...
 → data completion or (better) models robust to outliers
- still too few data
 - \rightarrow data generation, oversampling, GAN networks,...

Take-home messages

- Machine learning is not only about big data and deep learning
- Many real-world domains do not provide big data, still they are interesting
- Model-based learning is a fascinating and still very open field (of research and application)
- Do not underestimate the need to *understand* data (in addition to building good models)

Thanks to:

This work would not have been possible without the help of my colleague John A. Lee,

and numerous PhD students and post-docs

