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Who am I?
• From Malmö, Sweden 

• Studied: Lund (Sweden) >> Sussex (UK) >> Essex (UK) 

• Worked: Lugano (Switzerland) >> Copenhagen 
(Denmark) >> New York (USA) 

• philosophy + psychology >> artificial intelligence + 
robotics >> games 

• Current research focus: AI in games (player modeling, 
procedural content generation, evolutionary computation)



Artificial Intelligence



Artificial Intelligence

Making computers able to do things which currently 
only humans can do.



What do humans 
do with games?



What do humans 
do with games?

• Play them 

• Study them 

• Build content for them - levels, maps, art, 
characters, missions… 

• Design and develop them



Learning to play 
board games



Learning to play 
board games

AI applied to games



Challenges in 
AI/CI in Video Games

• Learning to play individual games 

• Playing in a human-like / believable manner 

• General game playing 

• Modeling player experience/style/preference 

• Generating game content 

• Generating games 

• AI-assisted game design tools



Another interesting feature is that different sets of be-
haviours and different levels of coordination between those
behaviours are necessary in order to play levels of differ-
ent difficulty, and complete these with different degrees of
success. In other words, there is a smooth learning curve
between levels, both in terms of which behaviours are nec-
essary and their necessary degree of refinement. For example,
to complete a very simple Mario level (with no enemies and
only small and few holes and obstacles) it might be enough to
keep walking right and jumping whenever there is something
(hole or obstacle) immediately in front of Mario. A controller
that does this should be easy to learn. To complete the same
level while collecting as many as possible of the coins present
on the same level likely demands some planning skills, such
as smashing a power-up block to retrieve a mushroom that
makes Mario Big so that he can retrieve the coins hidden
behind a brick block, and jumping up on a platform to collect
the coins there and then going back to collect the coins
hidden under it. More advanced levels, including most of
those in the original Super Mario Bros game, require a varied
behaviour repertoire just to complete. These levels might
include concentrations of enemies of different kinds which
can only be passed by observing their behaviour pattern and
timing Mario’s passage precisely; arrangements of holes and
platforms that require complicated sequences of jumps to
pass; dead ends that require backtracking; and so on. How to
complete Super Mario Bros in minimal time while collecting
the highest score is still the subject of intense competition
among human players3.

III. HOW?

Much of the work that went into this paper consisted in
transforming the Infinite Mario Bros game into a piece of
benchmarking software that can be interfaced with reinforce-
ment learning algorithms. This included removing the real-
time element of the game so that it can be “stepped” forward
by the learning algorithm, removing the dependency on
graphical output, and substantial refactoring (as the developer
of the game did not anticipate that the game would be turned
into an RL benchmark). Each time step, which corresponds to
40 milliseconds of simulated time (an update frequency of 25

fps), the controller receives a description of the environment,
and outputs an action. The resulting software is a single-
threaded Java application that can easily be run on any major
hardware architecture and operating system, with the key
methods that a controller needs to implement specified in
a single Java interface file (see figures 2 and 3). On an
iMac from 2007, 5�20 full levels can be played per second
(several thousand times faster than real-time) depending on
the level type and controller architecture. A TCP interface
for controllers is also provided, along with an example
Python client. However, using TCP introduces a significant
connection overhead, limiting the speed to about one game
per minute (three times real-time speed).

3Search for “super mario speedrun” on YouTube to gauge the interest in
this subject.

public enum AGENT_TYPE
{AI, HUMAN, TCP_SERVER}

public void reset();
public boolean[] getAction

(Environment observation);
public AGENT_TYPE getType();
public String getName();
public void setName(String name);

Fig. 2. The Agent Java interface, which must be implemented by all
controllers. Called by the game each time step.

// always the same dimensionality 22x22
// always centered on the agent
public byte[][] getCompleteObservation();
public byte[][] getEnemiesObservation();
public byte[][] getLevelSceneObservation();
public float[] getMarioFloatPos();
public float[] getEnemiesFloatPos();
public boolean isMarioOnGround();
public boolean mayMarioJump();

Fig. 3. The Environment Java interface, which contains the observation,
i.e the information the controller can use to decide which action to take.

We devised a number of variations on a simple neural-
network based controller architecture, varying in whether
we allowed internal state in the network or not, and how
many of the “blocks” around Mario were used as inputs.
The controllers had the following inputs; the value for each
input can be either 0 (on) or 1 (off).

• A bias input, with the constant value of 1.
• One input indicating whether Mario is currently on the

ground.
• One input indicating whether Mario can currently jump.
• A number of input indicating the presence of environ-

mental obstacles around Mario.
• A number of input indicating the presence of enemies

Fig. 4. Visualization of the environment and enemy sensors. Using the
smallest number of sensors, the top six environment sensors would output
0 and the lower three input 1. All of the enemy sensors would output 0, as
even if all 49 enemy sensors were consulted none of them would reach all
the way to the body of the turtle, which is four blocks below Mario. None
of the sensors register the coins.

Video games as AI 
testbeds / benchmarks



AI can be used for playing 
specific games

Another interesting feature is that different sets of be-
haviours and different levels of coordination between those
behaviours are necessary in order to play levels of differ-
ent difficulty, and complete these with different degrees of
success. In other words, there is a smooth learning curve
between levels, both in terms of which behaviours are nec-
essary and their necessary degree of refinement. For example,
to complete a very simple Mario level (with no enemies and
only small and few holes and obstacles) it might be enough to
keep walking right and jumping whenever there is something
(hole or obstacle) immediately in front of Mario. A controller
that does this should be easy to learn. To complete the same
level while collecting as many as possible of the coins present
on the same level likely demands some planning skills, such
as smashing a power-up block to retrieve a mushroom that
makes Mario Big so that he can retrieve the coins hidden
behind a brick block, and jumping up on a platform to collect
the coins there and then going back to collect the coins
hidden under it. More advanced levels, including most of
those in the original Super Mario Bros game, require a varied
behaviour repertoire just to complete. These levels might
include concentrations of enemies of different kinds which
can only be passed by observing their behaviour pattern and
timing Mario’s passage precisely; arrangements of holes and
platforms that require complicated sequences of jumps to
pass; dead ends that require backtracking; and so on. How to
complete Super Mario Bros in minimal time while collecting
the highest score is still the subject of intense competition
among human players3.

III. HOW?

Much of the work that went into this paper consisted in
transforming the Infinite Mario Bros game into a piece of
benchmarking software that can be interfaced with reinforce-
ment learning algorithms. This included removing the real-
time element of the game so that it can be “stepped” forward
by the learning algorithm, removing the dependency on
graphical output, and substantial refactoring (as the developer
of the game did not anticipate that the game would be turned
into an RL benchmark). Each time step, which corresponds to
40 milliseconds of simulated time (an update frequency of 25

fps), the controller receives a description of the environment,
and outputs an action. The resulting software is a single-
threaded Java application that can easily be run on any major
hardware architecture and operating system, with the key
methods that a controller needs to implement specified in
a single Java interface file (see figures 2 and 3). On an
iMac from 2007, 5�20 full levels can be played per second
(several thousand times faster than real-time) depending on
the level type and controller architecture. A TCP interface
for controllers is also provided, along with an example
Python client. However, using TCP introduces a significant
connection overhead, limiting the speed to about one game
per minute (three times real-time speed).

3Search for “super mario speedrun” on YouTube to gauge the interest in
this subject.

public enum AGENT_TYPE
{AI, HUMAN, TCP_SERVER}

public void reset();
public boolean[] getAction

(Environment observation);
public AGENT_TYPE getType();
public String getName();
public void setName(String name);

Fig. 2. The Agent Java interface, which must be implemented by all
controllers. Called by the game each time step.

// always the same dimensionality 22x22
// always centered on the agent
public byte[][] getCompleteObservation();
public byte[][] getEnemiesObservation();
public byte[][] getLevelSceneObservation();
public float[] getMarioFloatPos();
public float[] getEnemiesFloatPos();
public boolean isMarioOnGround();
public boolean mayMarioJump();

Fig. 3. The Environment Java interface, which contains the observation,
i.e the information the controller can use to decide which action to take.

We devised a number of variations on a simple neural-
network based controller architecture, varying in whether
we allowed internal state in the network or not, and how
many of the “blocks” around Mario were used as inputs.
The controllers had the following inputs; the value for each
input can be either 0 (on) or 1 (off).

• A bias input, with the constant value of 1.
• One input indicating whether Mario is currently on the

ground.
• One input indicating whether Mario can currently jump.
• A number of input indicating the presence of environ-

mental obstacles around Mario.
• A number of input indicating the presence of enemies

Fig. 4. Visualization of the environment and enemy sensors. Using the
smallest number of sensors, the top six environment sensors would output
0 and the lower three input 1. All of the enemy sensors would output 0, as
even if all 49 enemy sensors were consulted none of them would reach all
the way to the body of the turtle, which is four blocks below Mario. None
of the sensors register the coins.



AI playing games



Mario AI Championship
• Ran 2009-2012 

• Started with Gameplay track, which got progressively 
harder through generating harder levels 

• Added three more tracks: Gameplay track, Learning 
track, Level Generation track, and Turing Test track 

Reference: Julian Togelius, Noor Shaker, Sergey 
Karakovskiy and Georgios N. Yannakakis (2013): The 
Mario AI Championship 2009-2012. AI Magazine, 34(3), 
89-92. 



All methods have limits



REALM: Evolution to the rescue

Slawomir Bojarski and Clare Bates Congdon: REALM: A Rule-Based 
Evolutionary Computation Agent that Learns to Play Mario.CIG 2010.



Human-like (?) playing



Tell-tale signs of “humanity”

• Pauses before actions, “hesitates” 

• Does entirely uncalled for actions 

• Tries something and fails 

• Does not jump off the platform at the very last pixel



Car racing

• Driving a car fast requires fine motor control (in 
both senses) 

• Optimizing lap times requires planning 

• Overtaking requires adversarial planning





Learning to drive from humans

Niels van Hoorn, Julian Togelius, Daan Wierstra and Juergen 
Schmidhuber (2009): Robust player imitation with multiobjective evolution.



Can we construct an AI that 
can play many games?

Another interesting feature is that different sets of be-
haviours and different levels of coordination between those
behaviours are necessary in order to play levels of differ-
ent difficulty, and complete these with different degrees of
success. In other words, there is a smooth learning curve
between levels, both in terms of which behaviours are nec-
essary and their necessary degree of refinement. For example,
to complete a very simple Mario level (with no enemies and
only small and few holes and obstacles) it might be enough to
keep walking right and jumping whenever there is something
(hole or obstacle) immediately in front of Mario. A controller
that does this should be easy to learn. To complete the same
level while collecting as many as possible of the coins present
on the same level likely demands some planning skills, such
as smashing a power-up block to retrieve a mushroom that
makes Mario Big so that he can retrieve the coins hidden
behind a brick block, and jumping up on a platform to collect
the coins there and then going back to collect the coins
hidden under it. More advanced levels, including most of
those in the original Super Mario Bros game, require a varied
behaviour repertoire just to complete. These levels might
include concentrations of enemies of different kinds which
can only be passed by observing their behaviour pattern and
timing Mario’s passage precisely; arrangements of holes and
platforms that require complicated sequences of jumps to
pass; dead ends that require backtracking; and so on. How to
complete Super Mario Bros in minimal time while collecting
the highest score is still the subject of intense competition
among human players3.

III. HOW?

Much of the work that went into this paper consisted in
transforming the Infinite Mario Bros game into a piece of
benchmarking software that can be interfaced with reinforce-
ment learning algorithms. This included removing the real-
time element of the game so that it can be “stepped” forward
by the learning algorithm, removing the dependency on
graphical output, and substantial refactoring (as the developer
of the game did not anticipate that the game would be turned
into an RL benchmark). Each time step, which corresponds to
40 milliseconds of simulated time (an update frequency of 25

fps), the controller receives a description of the environment,
and outputs an action. The resulting software is a single-
threaded Java application that can easily be run on any major
hardware architecture and operating system, with the key
methods that a controller needs to implement specified in
a single Java interface file (see figures 2 and 3). On an
iMac from 2007, 5�20 full levels can be played per second
(several thousand times faster than real-time) depending on
the level type and controller architecture. A TCP interface
for controllers is also provided, along with an example
Python client. However, using TCP introduces a significant
connection overhead, limiting the speed to about one game
per minute (three times real-time speed).

3Search for “super mario speedrun” on YouTube to gauge the interest in
this subject.

public enum AGENT_TYPE
{AI, HUMAN, TCP_SERVER}

public void reset();
public boolean[] getAction

(Environment observation);
public AGENT_TYPE getType();
public String getName();
public void setName(String name);

Fig. 2. The Agent Java interface, which must be implemented by all
controllers. Called by the game each time step.

// always the same dimensionality 22x22
// always centered on the agent
public byte[][] getCompleteObservation();
public byte[][] getEnemiesObservation();
public byte[][] getLevelSceneObservation();
public float[] getMarioFloatPos();
public float[] getEnemiesFloatPos();
public boolean isMarioOnGround();
public boolean mayMarioJump();

Fig. 3. The Environment Java interface, which contains the observation,
i.e the information the controller can use to decide which action to take.

We devised a number of variations on a simple neural-
network based controller architecture, varying in whether
we allowed internal state in the network or not, and how
many of the “blocks” around Mario were used as inputs.
The controllers had the following inputs; the value for each
input can be either 0 (on) or 1 (off).

• A bias input, with the constant value of 1.
• One input indicating whether Mario is currently on the

ground.
• One input indicating whether Mario can currently jump.
• A number of input indicating the presence of environ-

mental obstacles around Mario.
• A number of input indicating the presence of enemies

Fig. 4. Visualization of the environment and enemy sensors. Using the
smallest number of sensors, the top six environment sensors would output
0 and the lower three input 1. All of the enemy sensors would output 0, as
even if all 49 enemy sensors were consulted none of them would reach all
the way to the body of the turtle, which is four blocks below Mario. None
of the sensors register the coins.



General intelligence
According to Legg and Hutter: sum of the 
performance of an agent on all possible problems, 
weighted by their simplicity 

3.3 A formal definition of machine intelligence 23

of short programs, that in general it is impossible for long random strings to have short
programs. In other words, they have high Kolmogorov complexity.

An important property of K is that it is nearly independent of the choice of U . To see
why, consider what happens if we switch from U , in the above definition of K, to some
other universal Turing machine U ′. Due to the universality property of U ′, there exists a
program q that allows U ′ to simulate U . Thus, if we give U ′ both q and p as inputs, it can
simulate U running p and thereby compute U(p). It follows then that switching from U to
U ′ in our definition of K above incurs at most an additional cost of l(q) bits in minimal
program length. The constant l(q) is independent of which string x we are measuring
the complexity of, and for reasonable universal Turing machines, this constant will be
small. This invariance property makes K an excellent universal complexity measure. For
an extensive treatment of Kolmogorov complexity see [LV97] or [Cal02].

In our current application we need to measure the complexity of the computable
measures that describe environments. It can be shown that this set can be enumerated
µ1, µ2, µ3, . . . (see Theorem 4.3.1 in [LV97]). Using a simple encoding method we can
express each index as a binary string, written ⟨i⟩. In a sense this binary string is a
description of an environment with respect to our enumeration. This lets us define the
complexity of an environment µi to be K(µi) := K(⟨i⟩). Intuitively, if a short program
can be used to describe the program for an environment µi, then this environment will
have a low complexity.

This answers our problem of needing to be able to measure the complexity of envi-
ronments, but we are not done yet. In order to formalise Occam’s razor we need to have
a way to assign an a priori probability to environments in such a way that complex en-
vironments are less likely, and simple environments more likely. If we consider that each
environment µi is described by a minimal length program that is a binary string, then the
natural way to do this is to consider each additional bit of program length to reduce the
environment’s probability by one half, reflecting the fact that each bit has two possible
states. This gives us what is known as the algorithmic probability distribution over the
space of environments, defined 2−K(µ). This distribution has powerful properties that es-
sentially solve long-standing open philosophical, statistical, and computational problems
in the area of inductive inference [Hut07a]. Furthermore, the distribution can be used to
define powerful universal learning agents that have provably optimal performance [Hut05].

Bringing all these pieces together, we can now define our formal measure of intelligence
for arbitrary systems. Let E be the space of all computable reward summable environ-
mental measures with respect to the reference machine U , and let K be the Kolmogorov
complexity function. The expected performance of agent π with respect to the universal
distribution 2−K(µ) over the space of all environments E is given by,

Υ(π) :=
∑

µ∈E

2−K(µ) V π
µ .

We call this the universal intelligence of agent π.
Consider how this equation corresponds to our informal definition. We needed a mea-

sure of an agent’s general ability to achieve goals in a wide range of environments. Clearly
present in the equation is the agent π, the environment µ and, implicit in the environment,
a goal. The agent’s “ability to achieve” is represented by the value function V π

µ . By a
“wide range of environments” we have taken the space of all well defined reward summable
environments, where these environments have been characterised as computable measures



The general video game 
playing competition

• Competitors submit controllers  
(AI programs written in Java) 

• The game engine lets these controllers play a 
number of unseen games, and scores them 

• The games are written in the  
Video Game Description Language



The Video Game  
Description Language

• Developed in order to be able to represent most 
games from the Atari 2600 era (and many from the 
C64 era) 

• Assumes 2D movement and graphical logic 

• Compact and human-readable 

• Game engines in Java and Python







Human player in Boulder Dash



Random controller on Boulder Dash



Monte Carlo Tree Search



MCTS controller on Boulder Dash



Random controller on “Aliens” (Space Invaders)



MCTS controller on “Aliens” (Space Invaders)



IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES 11

Rank Username G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10 Total Points Victories
1 adrienctx 25 25 6 18 10 12 25 25 18 25 189 40/50
2 JinJerry 18 10 18 25 25 25 15 4 25 8 173 33/50
3 SampleMCTS† 15 18 2 6 6 18 6 12 1 12 96 27/50
4 MnMCTS 2 12 8 15 2 10 12 10 12 6 89 25/50
5 MMbot 0 15 0 10 4 8 4 15 10 15 81 23/50
6 Shmokin 0 2 10 8 0 15 8 18 8 1 70 21/50
7 SampleGA† 8 0 25 4 8 0 0 8 0 10 63 19/50
8 Normal MCTS 12 0 12 0 0 0 0 2 15 18 59 18/50
9 IdealStandard 0 0 4 12 0 4 10 0 0 0 30 13/50
10 LCU 14 4 1 15 0 1 0 0 0 6 0 27 13/50
11 Yraid 1 0 1 0 0 0 18 6 0 0 26 14/50
12 T2Thompson 0 4 0 1 15 2 0 0 0 4 26 15/50
13 levis501 0 0 0 0 18 0 0 2 0 0 20 10/50
14 OneStepLookAhead† 6 0 0 0 12 0 0 0 0 0 18 9/50
15 TESTGAG 10 0 0 2 0 1 2 0 0 2 17 15/50
16 culim 0 6 0 0 0 6 0 2 2 0 16 9/50
17 Random† 0 8 0 0 0 0 1 0 0 0 9 5/50
18 Tichau 0 0 0 0 0 0 0 0 4 0 4 7/50

TABLE II
FINAL RANKINGS ON THE TRAINING SET. †DENOTES A SAMPLE CONTROLLER. G-1: ALIENS, G-2: BOULDERDASH, G-3: BUTTERFLIES, G-4: CHASE,

G-5: FROGS, G-6: MISSILE COMMAND, G-7: PORTALS, G-8: SOKOBAN, G-9: SURVIVE ZOMBIES, G-10: ZELDA

Rank Username G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10 Total Points Victories
1 adrienctx 0 25 25 18 25 25 25 25 25 10 203 24/50
2 JinJerry 10 18 15 25 15 15 12 10 4 1 125 14/50
3 SampleMCTS† 0 12 0 2 4 12 15 18 15 18 96 11/50
4 MnMCTS 4 1 8 8 12 6 6 12 12 25 94 12/50
5 Shmokin 6 8 0 12 10 10 18 6 18 6 94 13/50
6 levis501 8 6 18 0 18 0 1 0 0 12 63 8/50
7 culim 0 15 12 6 1 0 4 15 1 8 62 6/50
8 MMbot 0 10 0 10 0 8 0 8 8 15 59 9/50
9 IdealStandard 25 0 6 15 2 0 0 0 0 0 48 12/50
10 SampleGA† 0 0 0 0 10 18 0 0 0 0 28 6/50
11 T2Thompson 18 2 0 0 0 0 2 1 0 4 27 6/50
12 OneStepLookAhead† 15 0 10 0 0 0 0 0 0 0 25 6/50
13 Random† 0 0 0 4 10 0 8 0 0 0 22 4/50
14 Yraid 12 0 2 0 0 1 0 0 6 0 21 6/50
15 LCU 14 0 0 0 0 0 0 10 0 10 0 20 5/50
16 Normal MCTS 2 4 0 0 0 4 0 4 2 0 16 6/50
17 TESTGAG 1 0 1 1 0 2 0 2 0 0 7 6/50
18 Tichau 0 0 4 0 0 0 0 0 0 2 6 1/50

TABLE III
FINAL RANKINGS ON THE VALIDATION SET. †DENOTES A SAMPLE CONTROLLER. G-1: CAMEL RACE, G-2: DIGDUG, G-3: FIRESTORMS, G-4:

INFECTION, G-5: FIRECASTER, G-6: OVERLOAD, G-7: PACMAN, G-8: SEAQUEST, G-9: WHACKAMOLE, G-10: EGGOMANIA

Rank Username G-1 G-2 G-3 G-4 G-5 G-6 G-7 G-8 G-9 G-10 Total Points Victories
1 adrienctx 25 0 25 0 25 10 15 25 25 8 158 256/500
2 JinJerry 18 6 18 25 15 6 18 18 12 12 148 216/500
3 SampleMCTS† 10 18 6 4 18 25 6 12 0 0 99 158/500
4 Shmokin 6 25 0 12 10 8 0 10 6 0 77 127/500
5 Normal MCTS 12 0 4 15 4 15 10 4 4 0 68 102/500
6 culim 2 12 8 1 8 4 8 6 10 2 61 124/500
7 MMbot 15 0 1 2 12 12 2 15 0 0 59 130/500
8 TESTGAG 0 8 15 0 0 1 1 0 2 25 52 68/500
9 Yraid 0 6 10 0 0 0 12 0 15 6 49 93/500
10 T2Thompson 0 0 0 10 0 0 0 1 18 18 47 87/500
11 MnMCTS 8 8 0 0 1 18 4 8 0 0 47 109/500
12 SampleGA† 4 10 12 0 0 2 0 0 8 4 40 76/500
13 IdealStandard 1 6 0 0 6 0 25 0 0 1 39 134/500
14 Random† 0 15 0 18 2 0 0 0 0 0 35 78/500
15 Tichau 0 6 0 8 0 0 0 0 1 15 30 55/500
16 OneStepLookAhead† 0 6 0 0 0 0 0 0 1 10 17 51/500
17 levis501 0 0 2 6 0 0 0 2 1 0 11 50/500
18 LCU 14 0 4 0 0 0 0 0 0 0 0 4 54/500

TABLE IV
FINAL RESULTS OF THE GVGAI COMPETITION. †DENOTES A SAMPLE CONTROLLER.

• Two player games: Currently all the games have been de-
signed as single player games, for ease of initial setup and

evaluation. However, two (or more generally N ) player
games are of obvious interest and should be catered for in



Modern game development



Procedural content 
generation in games



Elite



Rogue



Diablo III



Spelunky



Civilization IV



Why PCG?
• Save development time and effort (money) 

• Unleash non-human creativity 

• Create endless games 

• Create player-adaptive games 

• Study game design by formalizing it



What are the challenges?
• Speed 

Real-time? Or design-time? 

• Reliability  
Catastrophic failures break gameplay 

• Controllability  
Allow specification of constraints and goals 

• Diversity  
Content looks like variations on a theme 

• Creativity 
Content looks “computer-generated”



Search-based PCG
• Use evolution (or similar algorithms) to search for 

good content 

• Main issues: 

• How to represent the content so that the content 
space can be searched effectively 

• How to evaluate the quality of content

J. Togelius, G. Yannakakis, K. O. Stanley and C. Browne
Search-based Procedural Content Generation: a Taxonomy and Survey  

IEEE TCIAIG 2011



Let’s evolve levels 
for Super Mario Bros!



Representation

• A number of “vertical 
slices” are identified from 
the original SMB levels 

• Levels are represented 
as strings, where each 
character correspond to 
a pattern

Figure 1: A simple 2-Path-pattern instance in SMB

to the left. This can be reproduced with only 2
vertical slices indicated with black frames shown to
the right.

Our current solution (which we refer to as ⇢2) is based
on the idea to approach content from the perspective of
Mario and not the view of the player. In the perspective
of the player we travel from left to right but as Mario we
travel forward one step at the time jumping onto objects
with varying vertical placement. From this perspective the
content of SMB can be viewed as vertical slices that together
with other slices make up our previous suggested patterns.

Level genotypes are represented as strings of length 200
with an alphabet of 24 symbols. Each symbol corresponds to
a vertical slice of Mario level with a length of 1 block and a
height of 13 blocks. Levels (phenotypes) are constructed by
simply appending vertical slices, giving all levels a length 200
blocks. The 24 slices used for the alphabet are representative
samples from patterns extracted from the original SMB.

Initially, we were concerned that since the vertical slices
are not always compatible with each other, we might need
an extra constraint checking function that would be time
consuming to design, implement and complex to maintain
and debug. However, with the Mario-viewpoint and the
more detailed analysis of the content in the original SMB we
concluded that the variation of vertical slices is surprisingly
limited. If we observe figure 1 we have a section of SMB
W1L1, that can be classified as a simple instance of the “2-
path”-pattern. In our representation this section is simply
a series of vertical slices of two types; the first one is used
three times (in position 1, 2 and 4) and the second one is
used once (in position 3). The two types contains a ground
block at the lowest hight of the level and a brick-block or
a question mark-block at height 4. In order to separate the
instance of the pattern from other instance we also need a
simple piece of ground at height 1.

See figure 3 for an explanation of how slices are appended
to create levels.

4.2 Putting pieces together
In order to explain the vertical slices and how we combine

them into patterns we will use an example with an instance
of the Enemy: 3-Horde-pattern [11] (as in figure 2). The
instance of the pattern could then be described as a sequence

Figure 2: A 3-horde-pattern in the wild (SMB

World 8 Level 1).

Figure 3: Adding vertical slices to form an instance
of the pattern in figure 2.



Evaluation
• 25 patterns are identified in 

the original SMB levels 

• e.g. enemy hordes, pipe 
valleys, 3-paths… 

• The evaluation function 
counts the number of 
patterns found in the level

Figure 4: A 3-Path-pattern.

Figure 5: Another 3-Path-pattern.

of three identical vertical slices. Each of the slices are simple
geometry (in the example; a ground-tile at “ground” level)
with an enemy in a manner portrayed in figure 3.

4.2.1 Example 1

A simple 2-Path-pattern instance in SMB which can be
reproduced with only 2 vertical slices (one slice with a brick-
tile and one slices with a ?-block) see figure 1.

4.2.2 Example 2

By adding a vertical slice with two blocks (a brick-tile and
?-block) and reusing two vertical slices from figure 1 we get
this instance of a 3-Path-pattern in figure 4.

4.2.3 Example 3

By adding a vertical slice with two ?-blocks and reusing a
vertical slice from figure 1 we get this instance of a 3-Path-
pattern in figure 5.

5. FITNESS FUNCTION
In our implementation (see figure 6) we use a fitness func-

tion to decide which level is the best suited to generate o↵-
spring and finally be chosen as the level to be played. In

Figure 6: Principal execution of the level generator.

Table 2: Patterns supported in the fitness function.
Enemies

Enemy Low
2-Horde Low
3-Horde Low
4-Horde Low
Roof Medium

Gaps
Gaps Low
Multiple gaps By stacking
Variable gaps By stacking
Gap enemy Low–Medium by stacking
Pillar gap Pillar High

Valleys
Valley Low
Pipe valley Medium
Empty valley By stacking
Enemy valley By stacking
Roof valley By stacking

Multiple paths
2-Path Medium–High
3-Path Medium–High
Risk and Reward By stacking

Stairs
Stair up Low
Stair down Low
Empty stair valley Low
Enemy stair valley By stacking
Gap stair valley By stacking

essence we perform a linear search through each member of
the population and assign a fitness value to each member,
the higher the value is (indicated as low, medium, high in
table 2), the greater the chance of surviving the next gen-
eration is. Some patterns are only supported by stacking of
beginning and endings of patterns where the parts add up
to a higher value (use “medium–high” as a value to compare
with other values in table 2) except for Gap enemy which
only need low–medium.
If a level sequence contains a pattern (see section 4.2) the

individual population member gets a higher fitness value.
If a level contains a sequence of symbols representing three
consecutive Goombas it is assigned a positive value. Simi-
larly a sequence of rocks with increasing height is assigned
a value depending on how long the sequence is. The fit-
ness value assigned is higher if the pattern is uncommon in
a random sequence. Unplayable sequences are given a high
negative number (but not �1) allowing breeding with a
lower chance of survival in order to allow mutation or cross-
over keeping the good part of the genotype for another gen-
eration. Uninteresting sequences are given a low negative



Figure 7: One-point crossover, where parent 1 (in
red) and parent 2 (in blue) result in mixed-colored
o↵spring child 1 and 2.

number in order to remove uninteresting parts of levels. We
allow some uninteresting sequences, like a string of simple
ground blocks in order to keep some kind of beat-like7 [32]
expression generated from this search-based approach.

The fitness function also contain beginnings and endings
of patterns thus allowing stacking of patterns on top of each
other. A beginning or ending is typically rewarded less than
a full complex sequence. However, if a beginning, a full
pattern and perhaps another beginning or ending is in a
sequence this will give a cumulative higher value and thus
solving the suggested improvement of stacked patterns in
the previous prototype [11].

6. EVOLUTIONARY ALGORITHM
In each evolutionary run, we use 200 levels as representa-

tions of our population and each genotype is initialized as
a uniformly random string of symbols drawn from the 24-
character alphabet of vertical slices. We used a simple µ+�
evolution strategy with µ = � = 50 with a combination of
mutation and one-point crossover as genetic operators8.

Before any evolution operation is performed on the pop-
ulation it is evaluated according to a fitness function (see
section 5). After that the population of 200 members are
ranked according to its fitness value. The top 50 percent
of the population are kept and the weakest 50 percent are
discarded, thus leaving 100 level positions for evolutionary
purposes.

We then let the top 50 percent breed with each other and
so utilizing the “empty” positions in our population. The
breeding is executed as a one-point crossover between pairs
in ranking order, in such way that the best ranked is breed
with the second in ranking, resulting in two new o↵spring,
and so on. Our implementation of the one-point crossover
has a fixed place for the crossover point in the middle of the
parents’ strings and from this point the strings are simply
swapped with each other. In order to certify that we do not
get stuck in a local maximum of the search-space we apply
a simple mutation operation to the o↵spring by inject a new
random character from our alphabet in a random position.
Since we have the opportunity to run the level generator in
o✏ine mode our evolutionary search runs for 10.000 gener-
ations in the current version of the implementation.

7. EXAMPLES OF GENERATED LEVELS
The evolutionary approach together with vertical slices

result in levels with both patterns, stacking of patterns and

7A rhythmic variation between exciting parts and calm parts
where the player can regain energy to tackle the next excit-
ing section.
8The one-point crossover is illustrated in figure 7.

Figure 8: ↵-level showing tendencies to overfill lev-
els.

Figure 9: �-level showing tendencies to stack pat-
terns.

similarity to the original game (compare figure 8, 9, 10, and
11). However, our current implementation does not sup-
port the concept of beats well enough9 where the content
alternate between high-intense and low-intense parts of the
levels. Adding better support to this might solve the ten-
dencies to tightly stack patterns and overfilling game space
as in figure 10 and 11. The reverse version of our approach
↵-level (see section 8) in figure 8 is overfilling the game space
but at least our level generator does not do as bad.

8. EVALUATION
In order to get some feedback on our prototype we devised

a simple play-test with three di↵erent levels generated from
three di↵erent stand-points. We refer to the di↵erent levels
as ↵, � and �. Level ↵ was using a reversed version of our
fitness function that in principle, punished any form of pat-
tern or beginning or end of a pattern. Level � was generated
using our actual fitness function and level � used a combi-
nation of our pattern-based prototype and imitated original
content from SMB. The play-testers consisted of 24 experi-
enced players (23 male, 1 female) in their twenties. The test
platform consisted of ordinary but high-end PC:s with key-
boards as control unit (UI). Our player feedback was gath-
ered through a simple survey. In order to limit bias on pre-
vious play-through of other versions three di↵erent groups

9According to some comments by the play-testers. See sec-
tion 8 for more play-test feedback.

Steve Dahlskog and Julian Togelius: Patterns as Objectives for Level Generation. PCG Workshop 2013



How would we generate rules 
for completely new games?



An example: Ludi 
creating board games

• Construct a language that can describe 
games…

• …and a game engine that can play any game 
described in the language

• Then, use evolution to design games!



The Ludi Game 
Description Language
• In practice limited to board games

• Ludeme: Fundamental units of independently 
transferable game information (“game 
meme”)

• (tiling square)

• (size 3 3)



Tic-Tac-Toe
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Players

Direct
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Fig. 3.  The basic game model. 
 

III. THE LUDI SYSTEM 
Ludi is a system for playing, measuring and synthesising 

games within the scope of its GDL (Fig. 2). The main 
components of the system are: 

• GDL:  defines the scope of games. 
• GGP:  interprets games and coordinates play.  
• Strategy module:   informs move planning. 
• Criticism module:  measures game quality. 
• Synthesis module:  generates new games. 

 

A.   Ludi GDL 
The Ludi GDL is a high level game description language 

based on the ludemic understanding of games outlined in 
Section II. It is structured to follow the basic means-play-ends 
model of games, extended to include the relationship between 
the game and its players (Fig. 3).  

The Ludi GDL was devised with Kernighan and Pike’s 
principles of good software design [14] in mind: 

• simplicity, 
• clarity, 
• generality, and 
• automation. 

 
It is a higher level language than the Stanford GDL and 

Zillions ZRF, and although concise and conducive to human 
authoring and machine manipulation it lacks the universal 
generality of the Stanford GDL in particular. However, its 
hierarchical and well-defined nature makes it ideal for the 
intended experiments, as it is much more likely that a 
structured tree-based language will evolve sensible rule sets 
than an unstructured logic-based one. The Ludi GDL proved 
sufficiently rich for this intended purpose that its somewhat 
limited scope was not an issue. 

The following example conveys the essence of the language: 
 

(game Tic-Tac-Toe 
   (players White Black) 
   (board  

(tiling square i-nbors) 
(size 3 3) 

) 
   (end (All win (in-a-row 3))) 
) 

 
Fig. 4.  The Ludi user interface. 

 
 

This game (Tic-Tac-Toe) is played between White and 
Black on a 3x3 square grid with orthogonal and diagonal 
adjacency, and is won by the player to make a line of three 
pieces of their colour (if any). Unless otherwise stated, it is 
assumed that players take turns placing a piece of their colour 
on an empty board cell each move. 

Ludi GDL definitions closely correspond to a game’s 
ludemic description, which is how a human designer would 
typically conceptualise the game. A more detailed description 
of the language is given in Appendix I and further examples of 
games defined in the GDL can be found in Appendix II.  
 

B.   Ludi GGP 
The core of the Ludi system is its general game player, as 

shown in Fig. 2. The Ludi GGP is implemented in C++ and 
provides the following functionality: 

• rules parser, 
• game object, 
• user interface, and 
• play manager. 
 

The rules parser loads and parses games defined in the Ludi 
GDL. If a definition is valid according to the grammar, then 
the corresponding ludeme tree is constructed and the single 
game object initialised. The game object maintains a record of 
the current board state and handles tasks such as the generation 
of legal moves and testing for terminal conditions. 

The user interface (Fig. 4) presents games uniformly and 
anonymously so that quality judgments are made on the merits 
of the games themselves rather than their visual attractiveness. 
The interface provides a plain English translation of the 
current rule set and a tutorial mode to help players understand 
new games.  In tutorial mode, legal placements are marked ‘+’ 
and legal destination cells for movable pieces are similarly 
marked ‘+’ when those pieces are clicked on. 



(size 3 3) vs (size 3 3 3)
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The term game shall henceforth refer to a two-player 
combinatorial game throughout this paper. Such games are an 
ideal test bed for the experiments as they are typically deep but 
described by simple, well defined rule sets. 

Note that this is not a work in combinatorial game theory 
(CGT), which is concerned with the analysis of games with a 
view to solving them or at least finding optimal strategies [3] 
and developing artificial players able to challenge human 
experts. Within the context of this study, the artificial player is 
of little interest except as a means for providing self-play 
simulations. While it must be of sufficient strength to provide 
meaningful playouts, we are concerned primarily with the 
quality of the game itself rather than the quality of the player. 

 

B.   Ludemes 
Just as a meme is a unit of information that replicates from 

one person to another [4], a ludeme is a game meme or unit of 
game information. First coined by Borvo [5], this term 
describes a fundamental unit of play often equivalent to a rule; 
ludemes are the conceptual equivalent of a game’s components 
– both material and non-material – and are notable for their 
ability to pass from one game or game class to another [6]. 

Ludemes may be single units of information, such as the 
following items that describe aspects of the game board shown 
in Fig. 1(a): 

 
(tiling square) 
 
(size 3 3) 

 
Conceptually related items may be encapsulated to form 

higher level compound ludemes as follows: 
 
(board 

  (tiling square) 
  (size 3 3) 
) 

 
Collecting rules into such compound ludemes is a 

convenient way to describe games. For example, the essence 
of Tic-Tac-Toe may be succinctly described as follows 
(assuming a two-player combinatorial model): 

 
(game Tic-Tac-Toe 

  (board 
   (tiling square) 
   (size 3 3) 

) 
(win (in-a-row 3)) 

) 
 

 The concept of an entire game as an item of information 
may seem odd but it is valid; there exist many examples of 
identical games being discovered, fully formed, at similar 
times. The most famous case is the independent discovery of 
Hex by mathematicians Piet Hein and John Nash in the 1940s 

(a) (b)  
 
Fig. 1.  Games of: (a) Tic-Tac-Toe and (b) Tic-Tac-Toe (3D) won by White. 

 

[7]. A more recent example is Chameleon, discovered by New 
Zealand and USA designers within a week of each other in 
2003. Such cases may be examples of “memetic convergence” 
in action towards optimal designs. 
 

C.  Recombination Games 
Given a game in its ludemic form, it is a simple matter to 

manipulate its rules to create variants and new games. For Tic- 
 

Tac-Toe, such modifications might include the board size: 
 

(size 2 2) 
 

or the target line length: 
 
(win (in-a-row 2)) 

 
 However, a moment’s reflection will reveal that each of 
these changes break the game, by making it unwinnable in the 
first case and trivially winnable in the second. 

Other manipulations might involve extending the board to 
three dimensions, as shown in Fig. 1(b): 

 
(size 3 3 3) 
 

or inverting the end condition to give a misere version: 
 
(lose (in-a-row 3)) 

 
These variants are both more interesting but still trivially 

solvable, and are more notable for their novelty value than any 
inherent value as games. There is much room for improvement 
in this branch of the N-in-a-row family. 

The difficulty of deriving an interesting game from Tic-Tac-
Toe does not just stem from the fact that it is itself flawed (it is 
drawish if played correctly). There is the serious problem that 
rule sets for combinatorial games tend to be highly optimised 
and fragile; authors strive for the simplest rule sets that give 
the deepest playing experience, and the slightest change will 
generally break a game. As in most creative fields, it is easy to 
generate artificial content but much more difficult to generate 
artificial content of human expert quality.  



Cameron Browne: Evolutionary Game Design, 2008.





Automatic Game Design
• Simple Pac-Man like games 

• Rule encoding: what 
happens when things 
collide 

• Fitness function: learnability 

J. Togelius and J. Schmidhuber: “An 
Experiment in Automatic Game Design”, 
CIG 2008



Discovering interesting game variants

Aaron Isaksen, Dan Gopstein, Julian Togelius and Andy Nealen: 
Discovering Interesting Game Variants. ICCC 2015.



Varying two dimensions



Evolving far-apart games



Evolving far-apart games



Needle Gnat

Lazy Blimp

Droppy Brick

Pogo Pigeon

Figure 7: The four game variants discovered using the Most Unique evolution method with k = 4. This method searches for the
k games which maximizes the minimum distance between any two points in the set. The games are generated by the authors,
not by the algorithm. (a) Needle Gnat: tiny player trying to thread a tight horizontal space. (b) Lazy Blimp: slow moving
blimp-like player with minimal gravity and jump. (c) Droppy Brick: frequent rise and fall with high gravity. (d) Pogo Pigeon:
very tall, thin bird that frequently hops to avoid crashing into the ground.



Collaborating with the AI

• The AI can design levels (and games) 

• But so can you! 

• Maybe you have different strengths and can work 
together?







Adaptive games

• Can we use PCG to create games that adapt to the 
player? 

• Adapt to what? Skill, preferences, strategy, playing 
style…



Player level preferences in 
Super Mario Bros

• Neuroevolutionary 
preference learning 

• Player experience model 
73-92%

Player Experience
(fun, frustration, anxiety, …)

Level features and rules, playing behavior

C. Pedersen, J. Togelius, G. N. 
Yannakakis., Modeling Player Experience 
for Content Creation IEEE TCIAG, 2010

http://www.bluenight.dk/mario.php


What can AI 
do for games?

• Generate complete games, which requires… 

• generating game content, which requires… 

• evaluating content and game quality, which 
requires… 

• modeling player preference and style, and… 

• learning to play arbitrary games



What can games 
do for AI?

• Provide superb testbeds, that are varied and 
human-relevant 

• Show us how we think 

• Teach us how to create AI that has fun
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