Al researchers: Games are your friends!

Julian Togelius New York University julian.togelius.com @togelius

Who am I?

- From Malmö, Sweden
- Studied: Lund (Sweden) >> Sussex (UK) >> Essex (UK)
- Worked: Lugano (Switzerland) >> Copenhagen (Denmark) >> New York (USA)
- philosophy + psychology >> artificial intelligence + robotics >> games
- Current research focus: AI in games (player modeling, procedural content generation, evolutionary computation)

Artificial Intelligence

Artificial Intelligence

Making computers able to do things which currently only humans can do.

What do humans do with games?

What do humans do with games?

- Play them
- Study them
- Build content for them levels, maps, art, characters, missions...
- Design and develop them

Learning to play board games

Challenges in AI/CI in Video Games

- Learning to play individual games
- Playing in a human-like / believable manner
- General game playing
- Modeling player experience/style/preference
- Generating game content
- Generating games
- Al-assisted game design tools

Video games as Al testbeds / benchmarks

Al can be used for playing specific games

Mario AI Championship

- Ran 2009-2012
- Started with Gameplay track, which got progressively harder through generating harder levels
- Added three more tracks: Gameplay track, Learning track, Level Generation track, and Turing Test track

Reference: Julian Togelius, Noor Shaker, Sergey Karakovskiy and Georgios N. Yannakakis (2013): The Mario AI Championship 2009-2012. AI Magazine, 34(3), 89-92.

All methods have limits

REALM: Evolution to the rescue

Slawomir Bojarski and Clare Bates Congdon: **REALM: A Rule-Based Evolutionary Computation Agent that Learns to Play Mario**.CIG 2010.

Human-like (?) playing

Tell-tale signs of "humanity"

- Pauses before actions, "hesitates"
- Does entirely uncalled for actions
- Tries something and fails
- Does not jump off the platform at the very last pixel

Car racing

- Driving a car fast requires fine motor control (in both senses)
- Optimizing lap times requires planning
- Overtaking requires adversarial planning

The 2011 Simulated Car Racing Championship @ Evo*-2011

Organizers

Daniele Loiacono, Politecnico di Milano Luigi Cardamone, Politecnico di Milano Martin Butz, University of Würzburg Pier Luca Lanzi, Politecnico di Milano

Learning to drive from humans

Niels van Hoorn, Julian Togelius, Daan Wierstra and Juergen Schmidhuber (2009): Robust player imitation with multiobjective evolution.

Can we construct an AI that can play many games?

General intelligence

According to Legg and Hutter: sum of the performance of an agent on all possible problems, weighted by their simplicity

$$\Upsilon(\pi) := \sum_{\mu \in E} 2^{-K(\mu)} V^{\pi}_{\mu}.$$

The general video game playing competition

- Competitors submit controllers (AI programs written in Java)
- The game engine lets these controllers play a number of *unseen* games, and scores them
- The games are written in the *Video Game Description Language*

The Video Game Description Language

- Developed in order to be able to represent most games from the Atari 2600 era (and many from the C64 era)
- Assumes 2D movement and graphical logic
- Compact and human-readable
- Game engines in Java and Python

```
BasicGame
      SpriteSet
              sword > Flicker color=LIGHTGRAY limit=1 singleton=True img=sword.png
              dirt > Immovable color=BROWN img=dirt.png
               exitdoor > Door color=GREEN img=door.png
              diamond > Resource color=YELLOW limit=10 shrinkfactor=0.75 img=diamond.png
              boulder > Missile orientation=DOWN color=GRAY speed=0.2 img=boulder.png
               moving >
                      avatar > ShootAvatar stype=sword img=avatar.png
                      enemy > RandomNPC
                              crab > color=RED img=camel.png
                              butterfly > color=PINK img=butterfly.png
      LevelMapping
              . > dirt
              E > exitdoor
              o > boulder
              x > diamond
              c > crab
              b > butterfly
      InteractionSet
              dirt avatar > killSprite
              dirt sword > killSprite
               diamond avatar > collectResource
              diamond avatar > killSprite scoreChange=2
              moving wall > stepBack
              moving boulder > stepBack
               avatar boulder > killIfFromAbove scoreChange=-1
              avatar butterfly > killSprite scoreChange=-1
              avatar crab > killSprite scoreChange=-1
               boulder dirt > stepBack
              boulder wall > stepBack
               boulder diamond > stepBack
              boulder boulder > stepBack
              enemy dirt > stepBack
               enemy diamond > stepBack
              crab butterfly > killSprite
              butterfly crab > transformTo stype=diamond scoreChange=1
               exitdoor avatar > killIfOtherHasMore resource=diamond limit=9
      TerminationSet
              SpriteCounter stype=avatar limit=0 win=False
              SpriteCounter stype=exitdoor limit=0 win=True
```


00	Java-VGDL	

Human player in Boulder Dash

Java-VGDL: Score:0.0. Tick:0

Random controller on Boulder Dash

Monte Carlo Tree Search

Java-VGDL: Score:0.0. Tick:0

MCTS controller on Boulder Dash

Java-VGDL: Score:3.0. Tick:17

Random controller on "Aliens" (Space Invaders)

000	Java-VGDL	

MCTS controller on "Aliens" (Space Invaders)

Rank	Username	G-1	G-2	G-3	G-4	G-5	G-6	G-7	G-8	G-9	G-10	Total Points	Victories
1	adrienctx	25	0	25	0	25	10	15	25	25	8	158	256/500
2	JinJerry	18	6	18	25	15	6	18	18	12	12	148	216/500
3	SampleMCTS [†]	10	18	6	4	18	25	6	12	0	0	99	158/500
4	Shmokin	6	25	0	12	10	8	0	10	6	0	77	127/500
5	Normal_MCTS	12	0	4	15	4	15	10	4	4	0	68	102/500
6	culim	2	12	8	1	8	4	8	6	10	2	61	124/500
7	MMbot	15	0	1	2	12	12	2	15	0	0	59	130/500
8	TESTGAG	0	8	15	0	0	1	1	0	2	25	52	68/500
9	Yraid	0	6	10	0	0	0	12	0	15	6	49	93/500
10	T2Thompson	0	0	0	10	0	0	0	1	18	18	47	87/500
11	MnMCTS	8	8	0	0	1	18	4	8	0	0	47	109/500
12	SampleGA [†]	4	10	12	0	0	2	0	0	8	4	40	76/500
13	IdealStandard	1	6	0	0	6	0	25	0	0	1	39	134/500
14	Random [†]	0	15	0	18	2	0	0	0	0	0	35	78/500
15	Tichau	0	6	0	8	0	0	0	0	1	15	30	55/500
16	OneStepLookAhead [†]	0	6	0	0	0	0	0	0	1	10	17	51/500
17	levis501	0	0	2	6	0	0	0	2	1	0	11	50/500
18	LCU_14	0	4	0	0	0	0	0	0	0	0	4	54/500

TABLE IV

Final results of the GVGAI Competition. †denotes a sample controller.

Modern game development

Procedural content generation in games

Elite

Diablo III

Spelunky

Civilization IV

Why PCG?

- Save development time and effort (money)
- Unleash non-human creativity
- Create endless games
- Create player-adaptive games
- Study game design by formalizing it

What are the challenges?

- *Speed* Real-time? Or design-time?
- Reliability Catastrophic failures break gameplay
- *Controllability* Allow specification of constraints and goals
- Diversity Content looks like variations on a theme
- Creativity Content looks "computer-generated"

Search-based PCG

- Use evolution (or similar algorithms) to search for good content
- Main issues:
 - How to represent the content so that the content space can be searched effectively
 - How to evaluate the quality of content

J. Togelius, G. Yannakakis, K. O. Stanley and C. Browne Search-based Procedural Content Generation: a Taxonomy and Survey IEEE TCIAIG 2011 Let's evolve levels for Super Mario Bros!

Representation

- A number of "vertical slices" are identified from the original SMB levels
- Levels are represented as strings, where each character correspond to a pattern

Evaluation

- 25 patterns are identified in the original SMB levels
- e.g. enemy hordes, pipe valleys, 3-paths...
- The evaluation function counts the number of patterns found in the level

Steve Dahlskog and Julian Togelius: Patterns as Objectives for Level Generation. PCG Workshop 2013

How would we generate rules for completely new games?

An example: Ludi creating board games

- Construct a language that can describe games...
- ...and a game engine that can play any game described in the language
- Then, use evolution to design games!

The Ludi Game Description Language

- In practice limited to board games
- Ludeme: Fundamental units of independently transferable game information ("game meme")
 - (tiling square)
 - (size 3 3)

Tic-Tac-Toe

```
(game Tic-Tac-Toe
(players White Black)
(board
  (tiling square i-nbors)
  (size 3 3)
(end (All win (in-a-row 3)))
```

(size 3 3) vs (size 3 3 3) 2

Cameron Browne: Evolutionary Game Design, 2008.

Automatic Game Design

- Simple Pac-Man like games
- Rule encoding: what happens when things collide
- Fitness function: learnability

J. Togelius and J. Schmidhuber: "**An Experiment in Automatic Game Design**", CIG 2008

Discovering interesting game variants

Aaron Isaksen, Dan Gopstein, Julian Togelius and Andy Nealen: **Discovering Interesting Game Variants**. ICCC 2015.

Varying two dimensions

Evolving far-apart games

Evolving far-apart games

Pogo Pigeon

Collaborating with the Al

- The AI can design levels (and games)
- But so can you!
- Maybe you have different strengths and can work together?

Generate Level Samples

Adaptive games

- Can we use PCG to create games that adapt to the player?
- Adapt to what? Skill, preferences, strategy, playing style...

Player level preferences in Super Mario Bros

- Neuroevolutionary preference learning
- Player experience model 73-92%

C. Pedersen, J. Togelius, G. N. Yannakakis., **Modeling Player Experience for Content Creation** *IEEE TCIAG*, 2010

What can Al do for games?

- Generate complete games, which requires...
- generating game content, which requires...
- evaluating content and game quality, which requires...
- modeling player preference and style, and...
- learning to play arbitrary games

What can games do for AI?

- Provide superb testbeds, that are varied and human-relevant
- Show us how we think
- Teach us how to create AI that has fun

Further reading

- Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley and Cameron Browne (2011): Search-based Procedural Content Generation: A Taxonomy and Survey. IEEE Transactions on Computational Intelligence and AI in Games (TCIAIG), volume 3 issue 3, 172-186.
- Georgios N. Yannakakis and Julian Togelius (2014): A Panorama of Artificial and Computational Intelligence in Games. IEEE Transactions on Computational Intelligence and AI in Games.
- Diego Perez, Spyridon Samothrakis, Julian Togelius, Tom Schaul, Simon Lucas, Adrien Couetoux, Jerry Lee, Chong-U Lim and Tommy Thompson (2015): The 2014 General Game Playing Competition. IEEE Transactions on Computational Intelligence and AI in Games.