

Evolving Fuzzy Systems (EFS)

Fundamentals, Reliability, Interpretability, Useability and Applications

Dr. Edwin Lughofer Department of Knowledge-Based Mathematical Systems Johannes Kepler University, Linz, Austria http://www.flll.jku.at/staff/edwin

Our Department – Location in Linz AND Hagenberg (Upper Austria)

Main Campus at the

University of Linz

Softwarepark Hagenberg

http://www.flll.jku.at/staff/edwin

Surveys about EFS

Edwin Lughofer

Evolving Fuzzy Systems

Methodologies Advanced Concepts Applications Springer, Heidelberg, 2011

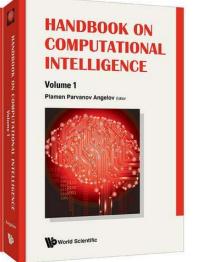
(approx. 150 figures, 250 images, 460 pages)

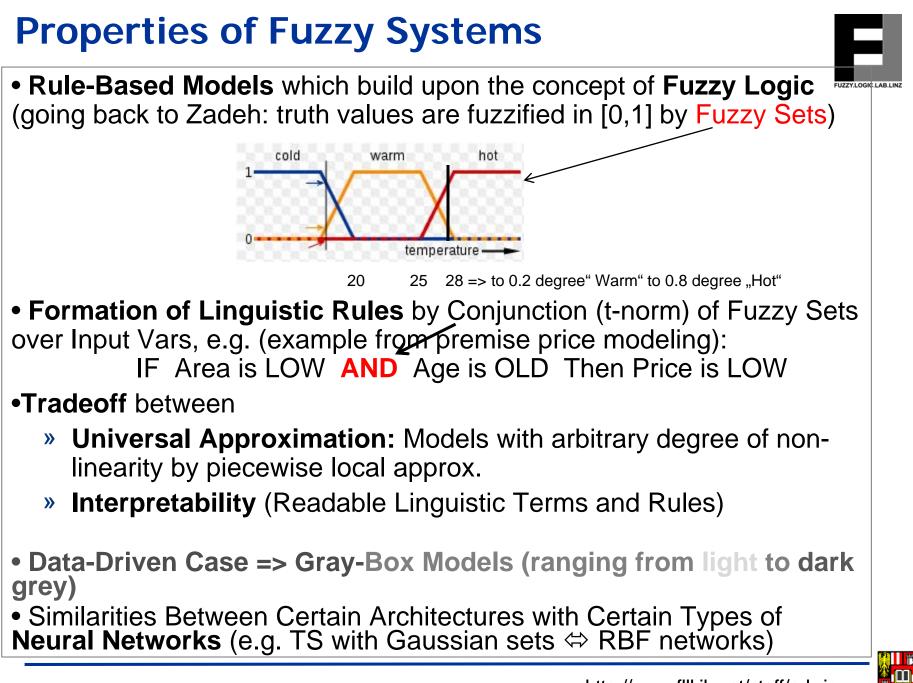
+ book chapter (60 pages) in Handbook on Computational Intelligence

Editor: Plamen Angelov

Title: EFS – Fundamentals, Reliability, Interpretability, Useability and Apps Publisher: World Scientific, January 2016

STUDIES IN FUZZINESS


D Springer


zziness

Evolving Fuzzy Systems

Computing

Research Directions in Fuzzy Sys Design

• Old-School (70ties, 80ties): Knowledge-Based Design (White Box)

• New-School (90ties, 00s): Data-Driven Learning with Machine Learning/Optimization Techniques (genfis2+3, LOLIMOT (tree-like structures), FMCLUST, ANFIS, Genetic FS ...) --- batch design!

• Emerging Topic 1 (in infants): Hybrid Design

- » Input: Expert-based Design + Measurement Data
- » Output: Refined Fuzzy Systems meeting Interpretability Constraints
- » Variants:
 - Movement of Expert-based Partitioning
 - Optimization of Fuzzy Set Combinations (=> New Rules)
 - Model Transfer (Mamdani=>Takagi-Sugeno, consequent re-learning)

• Emerging Topic 2: Adaptive Evolving from Streams

The Idea of Evolving Fuzzy Systems (emerged approx. 2004/05)

Evolving \neq **Evolutionary** (=>Genetic FS)

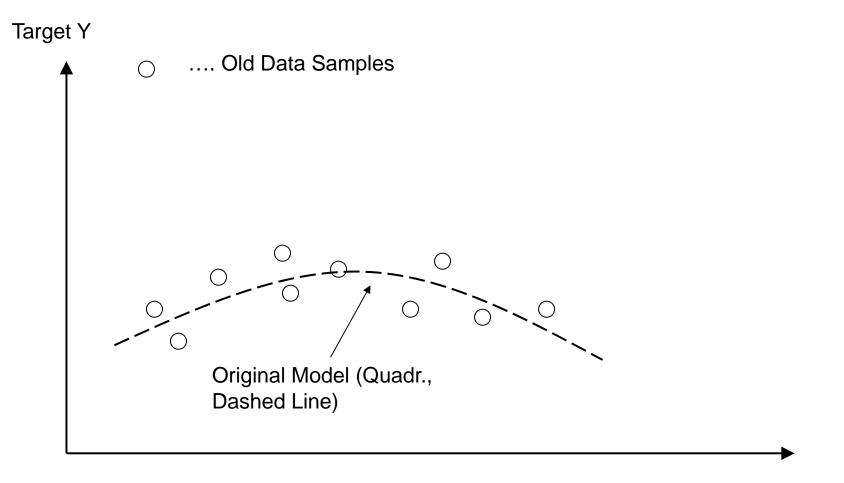
Learning Fuzzy Systems in (Single-Pass) Incremental and Evolving Manner from Streaming (Block/Sample-wise Loaded) Data

Characterization of a Data Stream (Gama, 2010):

- The data samples or data blocks are continuously arriving on-line over time
- The data samples are arriving in a specific order, over which the system has no control.
- Data streams are usually not bounded in a size
- Once a data sample/block is processed, it is usually discarded immediately, afterwards

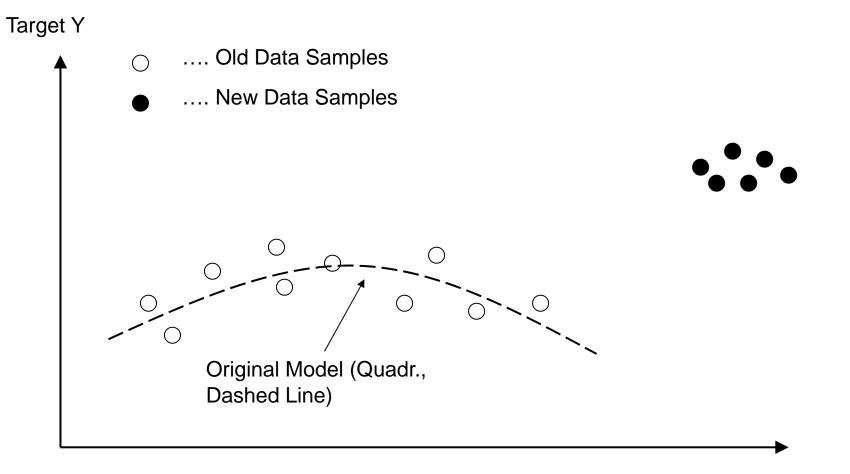
Concepts in Evolving Fuzzy Systems

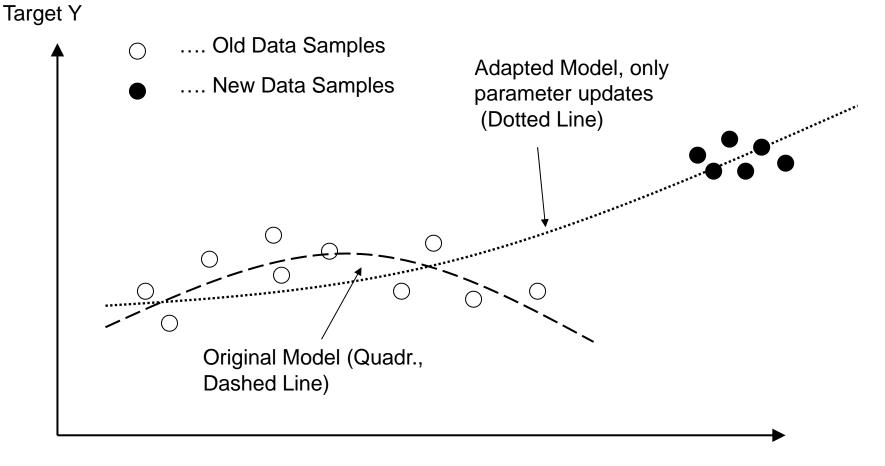
 Incrementality accounts for a step-wise (sample or block) processing of data and model building, omitting time-intensive re-training (on-line capability)

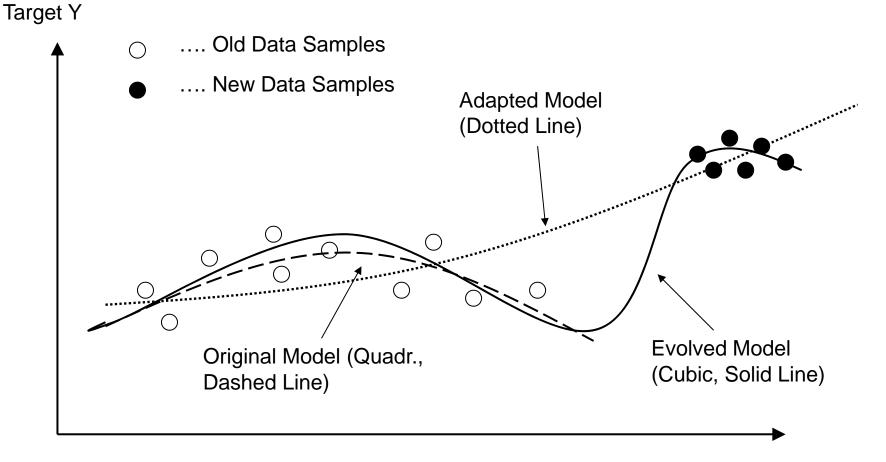

 Adaptivity accounts for (recursively) adapting parameters with newly loaded samples

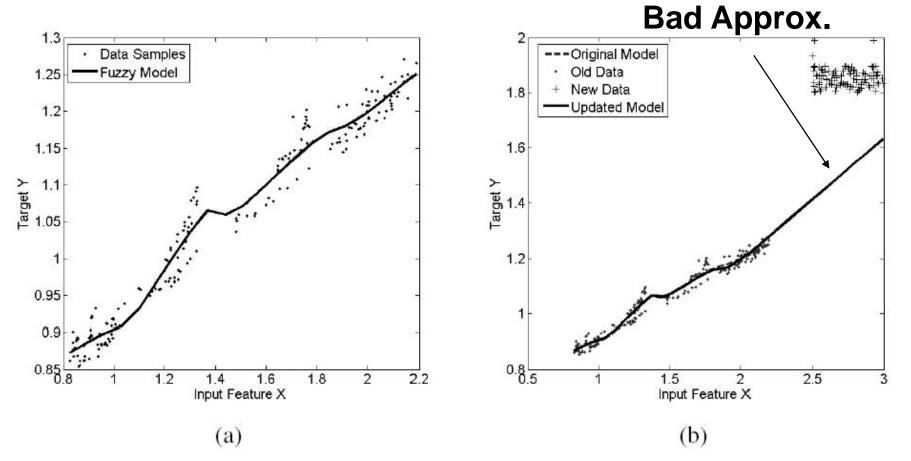
 Evolving means that structural components (rules, neurons) are added on demand due to new system states, operating conditions etc.

 Single-Pass Capability = Sample is loaded, sent into the incremental learning engine and discarded immediately, afterwards (achieving low computation time and virtual memory demand)

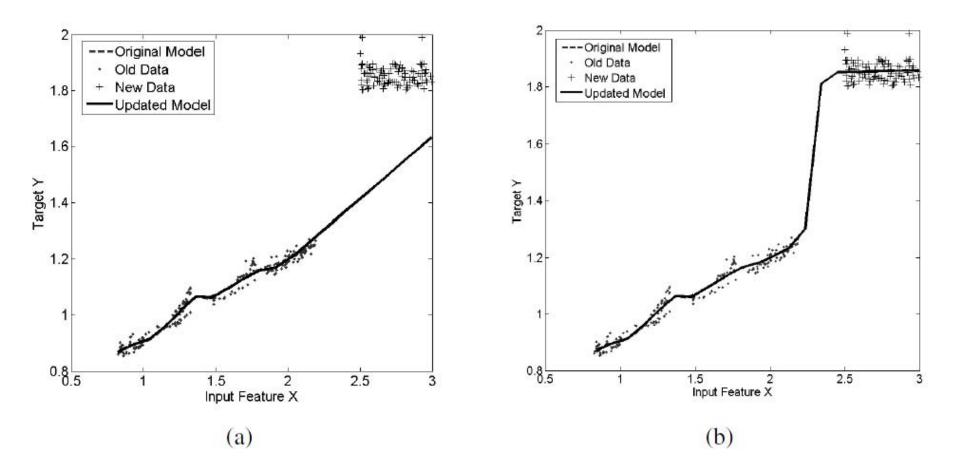






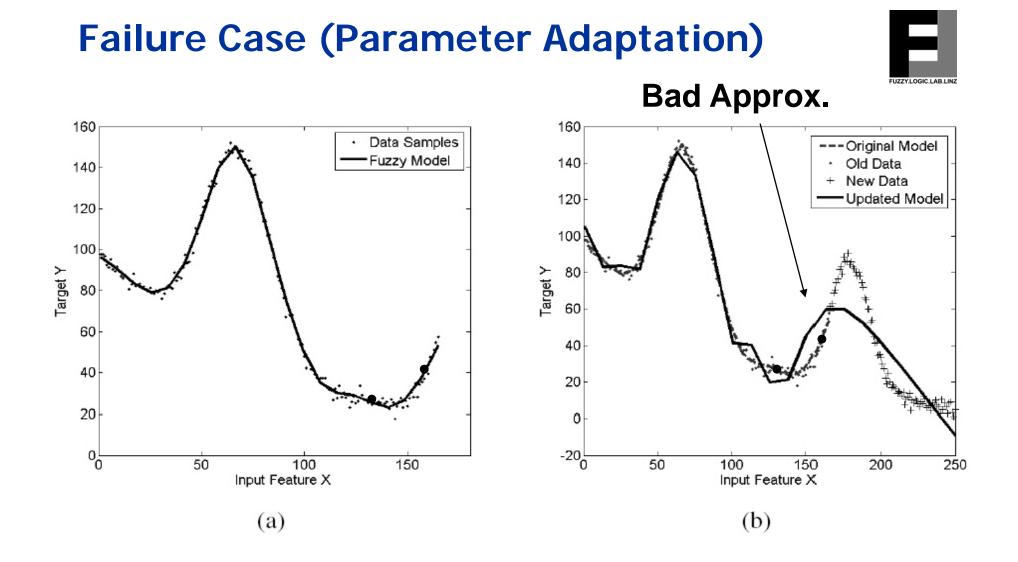


Failure Case (Parameter Adaptation)



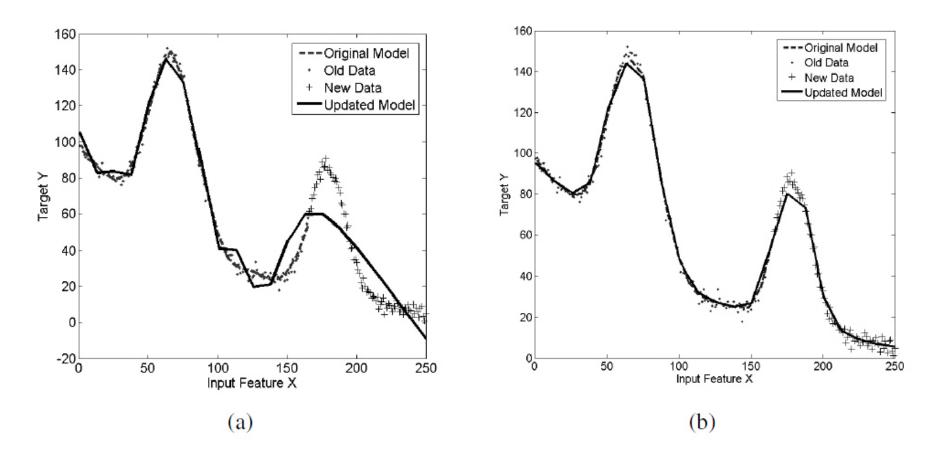
Significant Range Extension

Success of Update with EFS (evolving rule base)



Update Params only

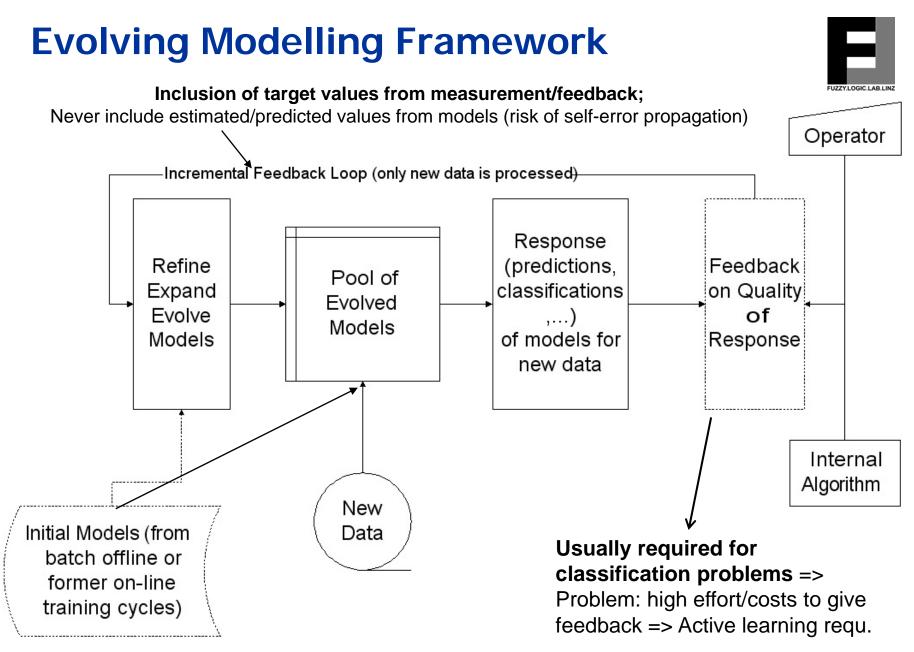
Update Structure + Params



Success of Update with EFS (evolving rule base)

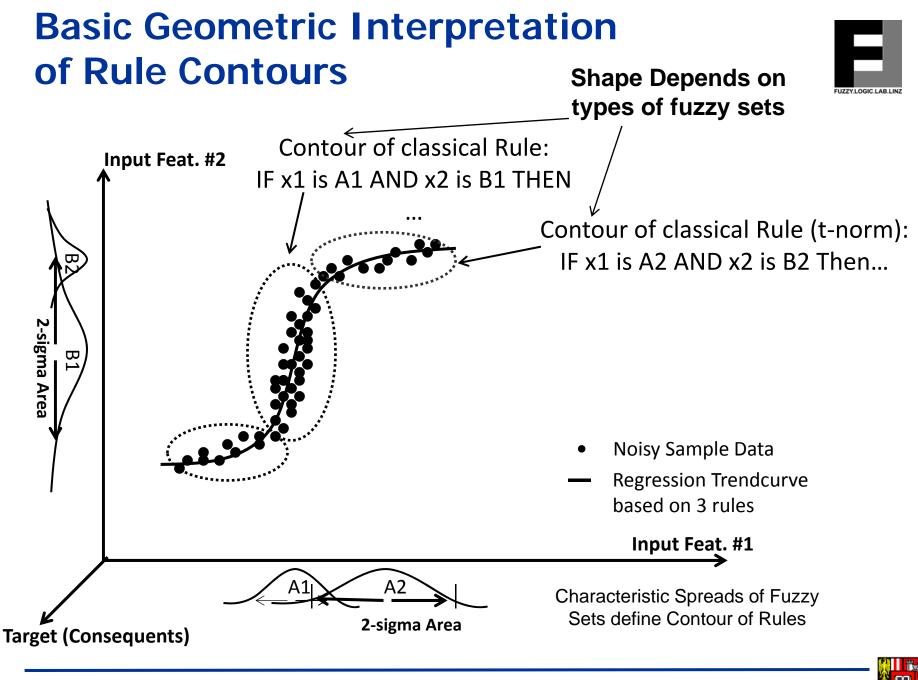
Update Params only

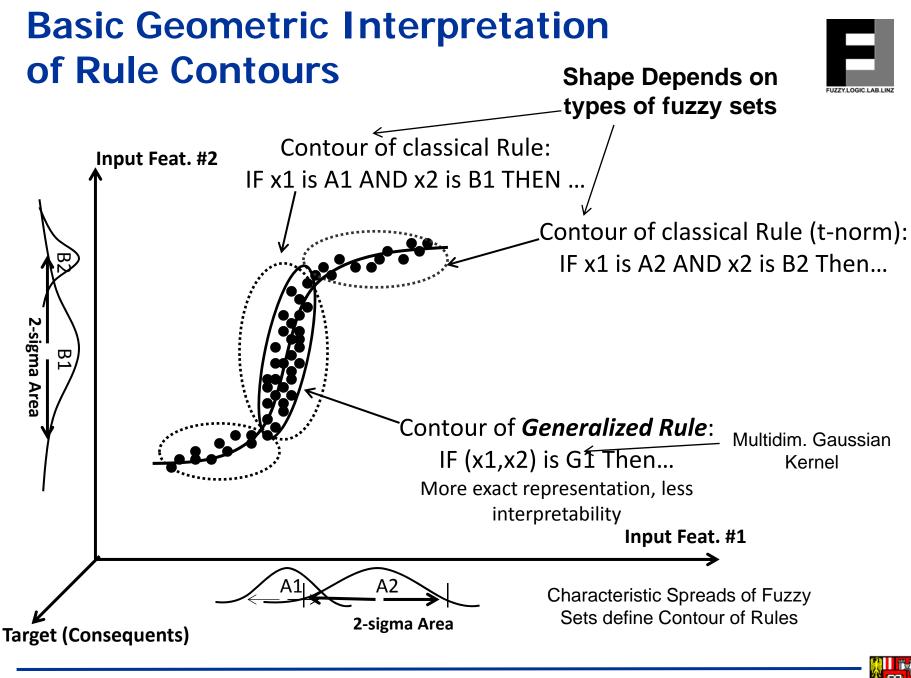
Update Structure + Params



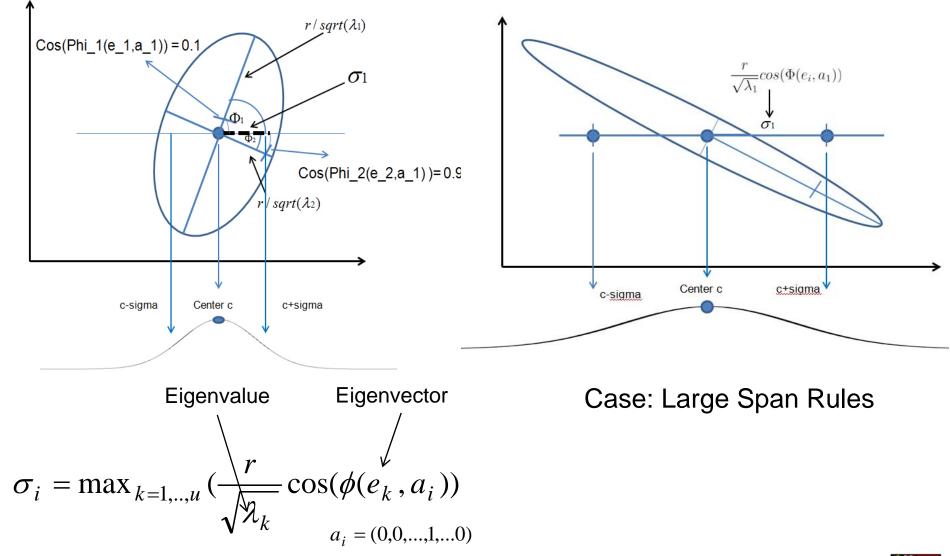
Some (Industrial) Requirements

- Fast Online Identification of Models/Classifiers (from scratch), usage in On-line Production/Decision/Plaus.
- Updating and extending models to dynamic changes, new operating conditions, environmental influences etc.
 => improvement of generalization capability of models
- Hybrid Modelling: Refining Knowledge-based Models (Rule-Base Systems) with Data
- Huge Data Bases [Big Data]: data which cannot be loaded into virtual memory at once => has to be processed block-wise
- Enhanced Human-Machine Interaction Scenarios (Operators give feedback and provide their expertise)


Definition of Fuzzy Rule Types in EFS (Regression) Arbitrary many ANDs


Rule_i : IF $(x_1 \text{ IS } \mu_{i1})$ AND...AND $(x_p \text{ IS } \mu_{ip})$ THEN $l_i \text{ IS } \Phi_i$

- Mamdani (Mamdani, Assilian, FSS, 1977)
 - » Φ_i : fuzzy set
- Sugeno
 - » Φ_i : singleton numerical (real) value
- Takagi-Sugeno (Takagi and Sugeno, IEEE SMC, 1985)
 - » Φ_i : linear function (hyperplane)
- Takagi-Sugeno-Kang (Sugeno and Kang, FSS, 1988)
 - » Φ_i : polynomial functions, Gamma, Kernels (local SVM) Covariance
- Generalized Takagi-Sugeno non-axis parallel
 Contours! New developm. in Lughofer, Cernuda et al., Evolving Sys, 2015
 - » Antecedent part is a multidimensional kernel, e.g. $\exp(-(X-C_i)^T \sum_{i=1}^{V} (X-C_i))$



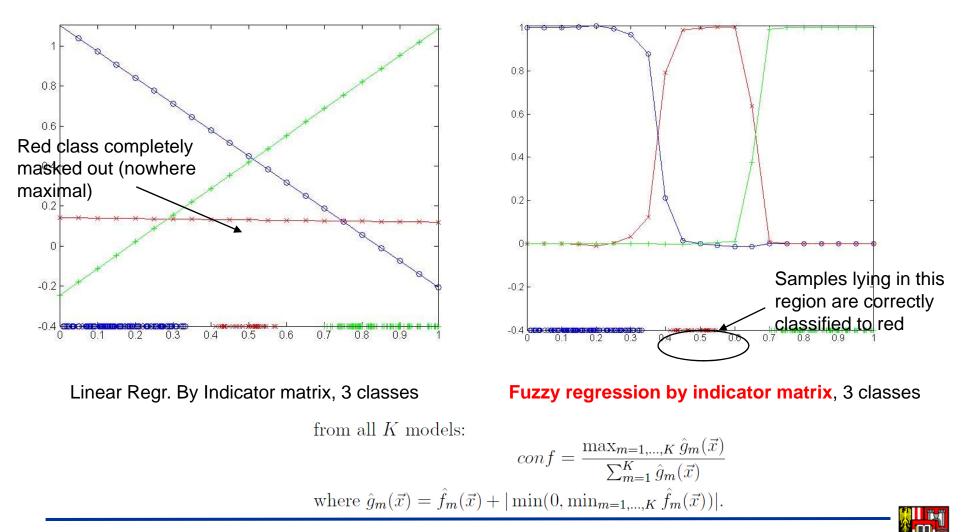
Extended Projection Concept to Assure Interpretability (Lughofer, Cernuda, Pratama, ES, 2015)

Evolving Fuzzy Classifiers

- Single Model Architecture (classical: Kruse, Nauck, Ishibuchi), two options
 - » Φ_i : Singleton consequent labels
 - » Φ_i : Confidence Vector for each Class (able to represent class overlaps in rules)

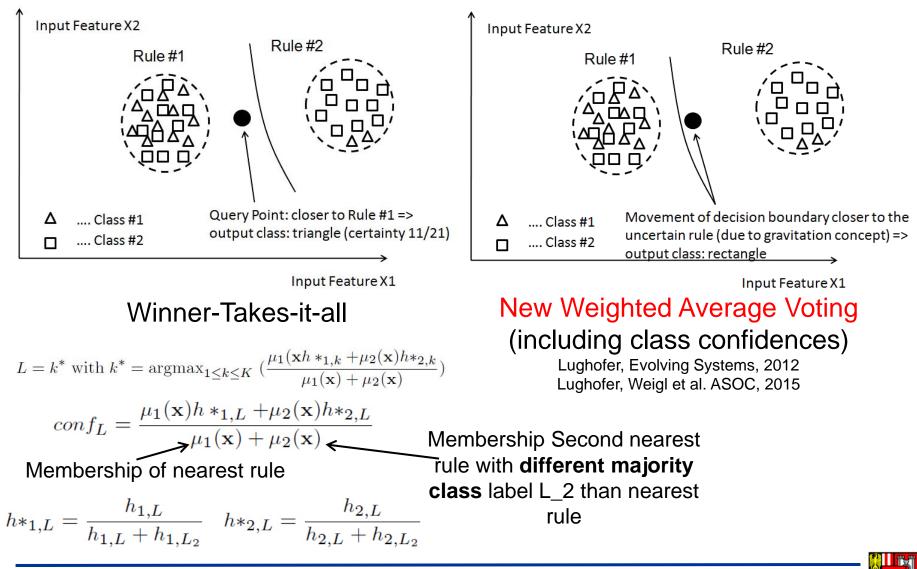
• Multi-Model Architecture for Class Decomposition:

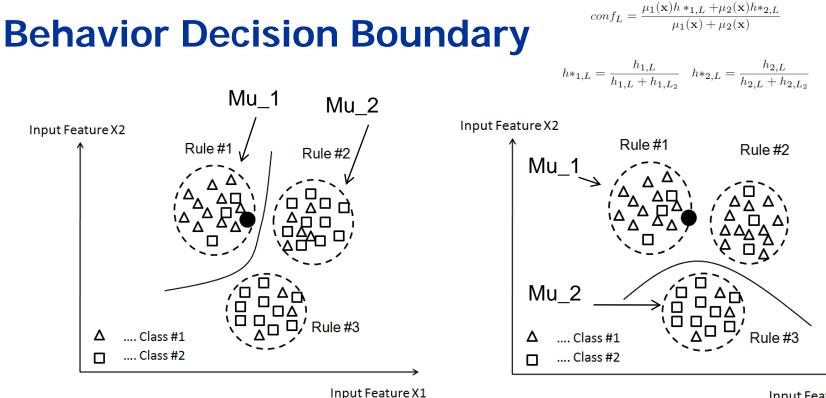
- **Regression-based on Indicator = one-versus-rest** (Lughofer, Angelov, Zhou, FSS, 2008) resolving masking effect of linear version
 Preference of Class #1 over all othe
- All-Pairs (Lughofer and Buchtala, IEEE TFS, vol. 21 (4), 2013) binary classifier between each class pair!
 - less complex decision boundaries,
 - new upcoming classes can be integrated quicker
 - (lower class imbalance effect)
 - enhanced output interpretation based on preference relation matrix


 $R = \begin{bmatrix} 0 & conf_{1,2} & conf_{1,3} & \dots & conf_{1,K} \\ conf_{2,1} & 0 & conf_{2,3} & \dots & conf_{2,K} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ conf_{K,1} & conf_{K,2} & conf_{K,3} & \dots & 0 \end{bmatrix}$

Preference degree of Class #2 over #1

Resolving Masking Effect in Indicator-Based Multi-Class Classification




http://www.flll.jku.at/staff/edwin

Geometric Interpretation of Classification in EFC

Input Feature X1

Example: two nearest rules having same majority class => decision boundary between these two and a third rule with different majority class => query point with low clonflict

Example: two nearest rules having

decision boundary inbetween, query

different majority classes =>

point with high conflict

Evolving Fuzzy Systems Approaches in Literature (2004-2015)

Common Baseline: RFWLS + Variants

			1					
Method	Architecture	Ant. Learning	Cons. Learn- ing	Rule Pr.	Forget.	Dim. Red.	# of P.	Note
AHLTNM ¹¹⁹	TS fuzzy system	Incremental Split- and-Merge (own)	RFWLS	Yes	Yes, con- sequ.	No	1-2	
DENFIS ¹¹²	neuro-fuzzy system	Evolving Cluster- ing (ECM)	RFWLS with distance weights	No	No	No	1-2	one of the first ap- proaches
$EFC-AP^{90}$	all-pairs classifiers	Evolving Cluster- ing (eVQ)	RFWLS or Consequent la- beling	Yes	No	No	1-2	Very high accuracy
EFP ¹¹⁰	Mamdani + TS fuzzy system	Evolving Cluster- ing (own) + RLM	RLM + RLS (global)	res	Yes, con- sequ. only	No	1-2	first attempt of re- cursive learning of non-linear params
$eFPT^{70}$	Tree-based structure	Dynamic substitu- tion with neighbor tree	None	Yes	No	Yes	3	good interpretabil- ity, exploits archi- tecture from ¹³⁰
eFT^{71}	Tree-based structure	Replacement of leaves with sub- trees	RFWLS double-weight.	No	No	Yes	4	first approach of evolving fuzzy deci- sion tree
eFuMo ¹¹³	dynamic TS fuzzy system (lags)	Evolving Clus- tering (Gustafson- Kessel)	RFWLS double-weight.	Yes	Yes, con- sequ + ante.	No	3-5	capable of splitting of rules
eMG^{48}	generalized TS fuzzy system	Participatory Learning	RFWLS double-weight.	Yes	No	No	4	first ap- proach using gener- alized rules
ENFM ¹¹⁷	generalized TS fuzzy system	Recursive Cluster- ing (Gath-Geva)	RFWLS	Yes	Yes, con- sequ. only	No	3	
$eClass^{85}$	single model, one- versus-rest classi- fiers and MIMO	Evolving clustering (eClustering)	RFWLS + or Consequent la- beling	No	Yes, con- sequ. only	No	1-2	first one-vs-rest in EFC
ePL^{124}	TS fuzzy system	Participatory Learning	RLS (global)	Yes	No	No	5	first usage of participa-
$eT2FIS^{64}$	Type-2 Mamdani	Native activa- tion levels, param- eter undates	same as an- tecedent learn- ing	Yes	No	No	3	first evolving Type- 2 Mamdani system
$eTS(+)^{114,115}$	TS fuzzy system	Evolving clustering (eClustering)	RFWLS double-weight.	Yes	Yes, later in ¹³¹	Yes	1-2	one of the pioneer- ing methods (2004)
$eTS-LS-SVM^{55}$	extended TS fuzzy system	Recursive cluster- ing, suitability	Recursive Gauss-Newton	Yes	No	No	6 (2+4)	first approach for evolving extended TS fuzzy system

Dr. Edwin Lughofer

Huge Diversity

http://www.flll.jku.at/staff/edwin

Evolving Fuzzy Systems Approaches in Literature (2004-2015)

Common Baseline: RFWLS + Variants

	ſ		1					_
Method	Architecture	Ant. Learning	Cons. Learn- ing	Rule Pr.	Forget.	Dim. Red.	# o: P.	f Note Evolution
FLEXFIS(++) ^{101,132}	TS fuzzy system	Evolving clustering (eVQ)	RFWLS	Yes	Yes, con- sequ. + ante.	No	1-2	first approach for-g getting in ante, en-y hanced robustness s
FLEXFIS-Class ^{85,133}	single model, one- vs-rest classifiers	Evolving clustering (eVQ)	RFWLS	No	Yes, con- sequ. onlv	Yes (smoot	1-2 h)	first one-vs-rest in EFC
FPA ¹³⁴	single model classi- fiers	incremental constraint-based optimization	weight vector update	No	No	No	2	118 F
Gen-FLEXFIS ⁵⁴	generalized TS fuzzy system	Evolving clustering (extended eVQ)	RFWLS	Yes	Yes, con- sequent only	Yes (smoot	1-2 h)	first joint concept on-line dim. red. for gen. rules + pruning
GENEFIS ⁵¹	generalized TS fuzzy system	Gen. adaptive res- onance theory + stat. influence	FWGRLS	Yes	No	Yes (crisp)	3-4	gen. rules $+ \text{ on}_{2}^{2}$ line dim. red.
HAW-NFS ¹³⁵	neuro-fuzzy system	inc opt. (nonlin- ear mod. of Kacz- marz ¹³⁶)	RLS (global)	No	No	No	3	first wavelet-based neuro-fuzzy
LOLIMOT inc. ¹²⁶	Tree-based structure	Node replacement (recursive split)	Recursive non-linear least	No	No	No	1-2	first approach for an incremental LOLIMOT ³³
PANFIS ⁵⁰	generalized TS fuzzy system	Extended Self- Organizing Map, statistical influence	FWGRLS	Yes	No	No	2	first proj. concepts of gen. rules, sta- bility proofs
IGK	T3 fuzzy system	Recursive cluster- ing (GK)	RES (global), RFWLS (local)	No	res, con- sequ. only	No	3-0	no rule evolution ability
(E)SAFIS ^{120,137}	TS fuzzy system (MIMO)	statistical influ- ence, distance cri- terion	RLS (global), inc. stability with Lyapunov	Yes	No	No	3	one of the pioneer-> ing methods (2005-pi 2006)
SAFIS-Class	TS fuzzy system	ence, distance cri- terion	RLS (global)	res	INO	INO	6	ions29
SEIT2FNN ⁶³	Type-2 TS fuzzy system	coverage criterion, incremental steep- est descent	RLS (global)	No	Yes, con- sequ. only	No	3	first approach for an evolving Type-2 fuzzy system
SOFMLS ²⁶	Mamdani	Evolving clustering (nearest neighbor- hood)	modified RLS with in- creased stability	Yes	No	No	4	first approach of an evolving Mamdani fuzzy system
SOFNN (imp) ^{103,118}	neuro-fuzzy system	coverage and sys- tem error criteria, rule enlargement	modified RLS (global) with weight pa- rameter	Yes	No	No	2	one of the pioneer- ing methods (2005)

Algorithmic Key Steps in EFS (Common Denominator)

Algorithm 1.1. Key Steps in an Evolving Fuzzy Systems Learning Engine

- (1) Load new data sample \vec{x}
- (2) Pre-process data sample (e.g. normalization)
- (3) If rule-base is empty, initialize the first rule with its center to the data sample $\vec{c} = \vec{x}$ and its spread (range of influence) to some small value; goto Step (1).
- (4) **Else**, perform the following steps (5-10):
- (5) Check if rule evolution criteria are fulfilled
 - (a) If yes, evolve a new rule (Section 3.4) and perform body of Step (3) (without if-condition).
 - (b) If no, proceed with next step.
- (6) Update antecedents parts of (some or all) rules (Sections 3.4 and 3.2)
- (7) Update consequent parameters (of some or all) rules (Sections 3.3 and 3.1)
- (8) Check if the rule pruning/merging criteria are fulfilled
 - (a) If yes, prune or merge rules (Section 3.4); goto Step (1).
 - (b) If no, proceed with next step.
- (9) Optional: Perform corrections of parameters towards more optimality.
- (10) Goto Step (1).

Algorithmic Key Steps in EFS (Common Denominator)

Algorithm 1.1. Key Steps in an Evolving Fuzzy Systems Learning Engine

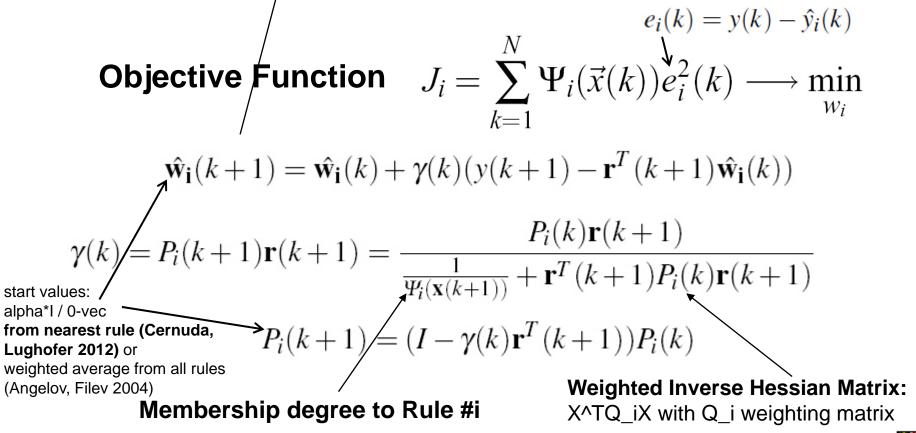
- (1) Load new data sample \vec{x}
- (2) Pre-process data sample (e.g. normalization)
- (3) If rule-base is empty, initialize the first rule with its center to the data sample $\vec{c} = \vec{x}$ and its spread (range of influence) to some small value; goto Step (1).
- (4) **Else**, perform the following steps (5-10):
- (5) Check if rule evolution criteria are fulfilled Very approach dependent
 - (a) If yes, evolve a new rule (Section 3.4) and perform body of Step (3) (without if-condition).
 - (b) If no, proceed with next step.
- (6) Update antecedents parts of (some or all) rules (Sections 3.4 and 3.2) Very approach dependent
- (7) Update consequent parameters (of some or all) rules (Sections 3.3 and 3.1) Common Baseline: (8) Check if the nule proving (manying enitorie are fulfilled RFWLS
- (8) Check if the rule pruning/merging criteria are fulfilled
 - (a) If yes, prune or merge rules (Section 3.4); goto Step (1). Very approach dependent: Generalization Concept in
 - (b) If no, proceed with next step.
- (9) Optional: Perform corrections of parameters towards more optimality.
- (10) Goto Step (1).

Lughofer et al., EUSFLAT, ES, 2011

Consequent Learning (More or less Standardized)

- Updating (Linear) Consequent Parameters in TS(K)fuzzy Systems by recursive fuzzily weighted least squares
 - » => induces a local learning effect
 - » Converges in one iteration step (=> global optimality) due to parabola of objective function!
 - » => Fast and robust convergence to hypothetical batch case

» Recent extensions introduce:


- 1.) weight decay regularization (GFWLS)
- 2.) adaptation regulation factor (based on the current approximation error), 3.) forgetting of older samples

Incremental Learning of Consequent Parameters (in TS fuzzy systems)

Local learning by a recursive fuzzily weighted least squares (consequ. func. for each rule separately)

Local Verus Global Learning (All Params in All Rules at Once)

 More Flexibility during learning: Rules can be added, pruned or merged by not ,disturbing' the recursive parameter update of the others
 (Global learning requires a spec. Handling of the inverse Hessian in such cases as size changes)

- Comp. Complexity: O(C(p+1)^2) versus O((C(p+1))^2)
- More stability as dealing with smaller Hessian matrices
- Local feature weighting capability (per local region)
- Better Interpretability (piecewise linear approx. along real trend of curve, Yen, Wang and Gillespie, IEEE TFS, 1998)

Antecedent Learning - Principles

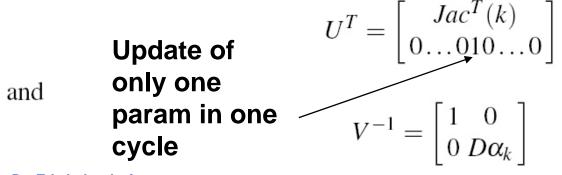
- Incremental Partitioning of the Feature Space:
 - » Concept 1: Rule Evolution (expansion of the knowledge base to explore new regions) – distance and density-based criteria
 - » Concept 2: Rule Pruning (contraction of the knowledge base to remove redundancies, obsolete rules etc.) => more compact, less time-intensive for on-line – distance and geometric criteria
- Incremental Adaptation of Non-Linear Parameters:

 analytical (incremental optimization, e.g. RLM), concept by Wang, Vrbanek, IEEE TFS, 2008!
 heuristics-based (movement of rules, fuzzy sets), often done with inc. Clustering (many possibilities: eVQ, incremental fuzzy c-means, recursive Gustafsson.Kessel, recursive subtractive clustering, potentials as denisity estimators, evolving participatory learning, ...)

Incremental Learning of Non-Linear Antecedent Parameters (for LS Problem)

Recursive LM (used in EFP by Wang and Vrbanek, 2008)

$$\Phi_{nonlin}(k+1) = \Phi_{nonlin}(k) + P(k)Jac^{T}(k)e(k)$$
(2.87)

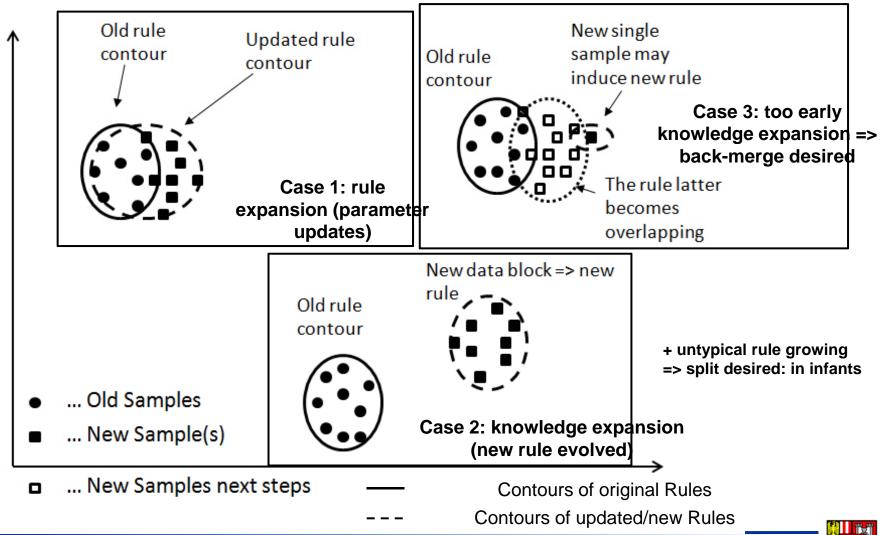

with

$$P(k) = \frac{1}{\lambda_k} (P(k-1) - P(k-1)US^{-1}U^T P(k-1))$$
(2.88)

 λ_m a forgetting factor (set to 1 in case of no forgetting) and

$$S = \lambda_k V + U^T P(k-1)U \tag{2.89}$$

The matrix *S* is a 2×2 matrix, therefore easily and quickly calculated in each update step; this is because

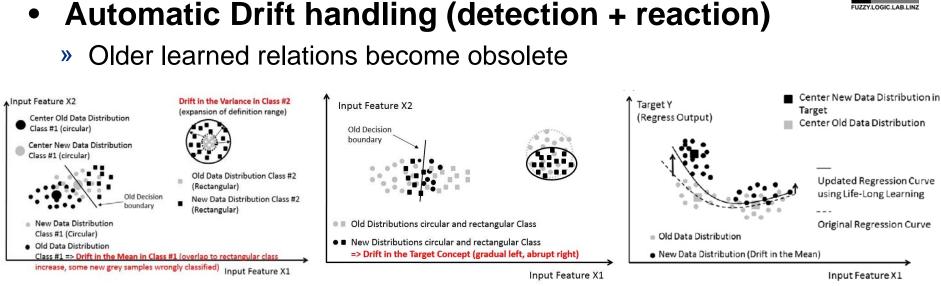


Dr. Edwin Lughofer

Principal Cases of Data Stream Influence on Rules (over time)

Concrete Example: Antecedent Learning

in FLEXFIS (Lughofer, IEEE TFS, 2008)


- is performed in the Clustering Space => each cluster is associated with one rule (local region)
- Based on evolving version of Vector Quantization (eVQ, Lughofer, PR, 2008)
- Three central steps (Start: first center = first sample):
 - Checking whether a data sample x fits into cluster partition
 - Main Pos (Euclid): distance to nearest cluster higher than vigilance
 - Arb. Pos (Mahal): Statistical Tolerance Region
 - If yes, Movement of winning = nearest center towards sample $\mathbf{c}_{win}^{(new)} = \mathbf{c}_{win}^{(old)} + \eta(\mathbf{x} \mathbf{c}_{win}^{(old)})$, Update ranges of influence of win. Cluster

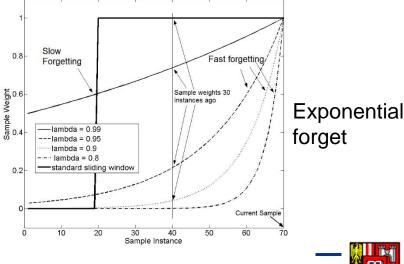
Ellipsoids in Main Position (Euclid): $(k_i + 1)\sigma_{ij}^2 = k_i\sigma_{ij}^2 + (k_i + 1)\Delta c_{ij}^2 + (c_{ij} - x_{kj})^2 \quad \forall j = 1, ..., p+1$

Ellipsoids in Arbitrary Position (Mahal):
$$\Sigma^{-1}(k+1) = \frac{\Sigma^{-1}(k)}{1-\alpha} - \frac{\alpha}{1-\alpha} \frac{(\Sigma^{-1}(k)(\mathbf{x}-\mathbf{c}))(\Sigma^{-1}(k)(\mathbf{x}-\mathbf{c}))^T}{1+\alpha((\mathbf{x}-\mathbf{c})^T\Sigma^{-1}(k)(\mathbf{x}-\mathbf{c}))}$$

• If no, evolve new Rule $c_{C+1} = x \quad \Sigma_{C+1}^{-1} = \frac{\sum_{i=1}^{C} \Sigma_i^{-1}}{C} \quad \Sigma_1^{-1} = diag(\frac{frac}{range^2})$

Drift in Input Space (Mean, Variance)

Drift in Target (classification)

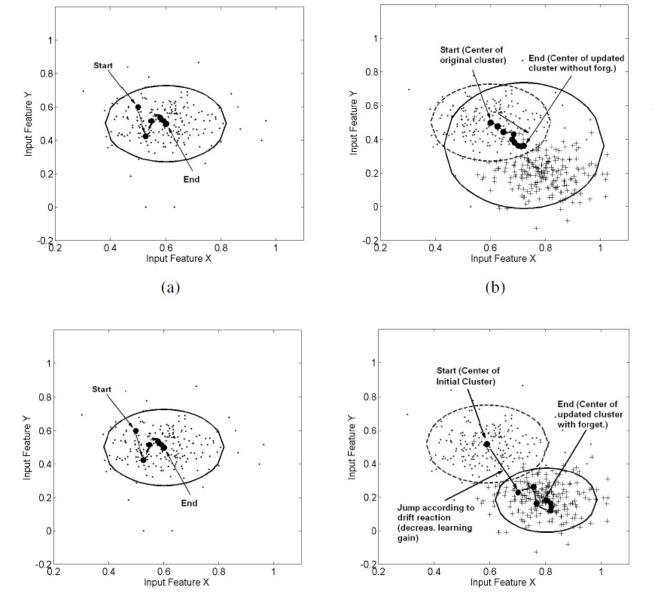

Concepts for Increased Stability

» Global and Local Drift Handling (different intensity! per Rule): Shaker, Lughofer, Evolving Systems, 2014

$$\lambda_{i,t} = \lambda_{i,t-1} - direction(drift_indicator)C_tA_{i,t}$$

$$C_t = \frac{drift_accum_{t-1} - drift_accum_t}{\rho * rmse_t}$$

$$A_{i,t} = \frac{Err_i}{\sum_{k=1}^{C} Err_k}$$



http://www.flll.jku.at/staff/edwin

Dr. Edwin Lughofer

Drift Reaction - Example

Conventional Update => cluster joins both distribution

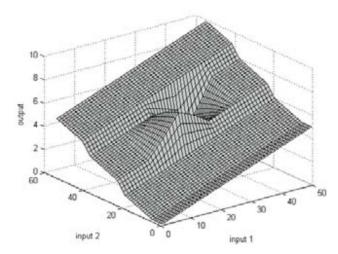
Update with forgetting => Cluster covers new distribution (old samples completely forgotten

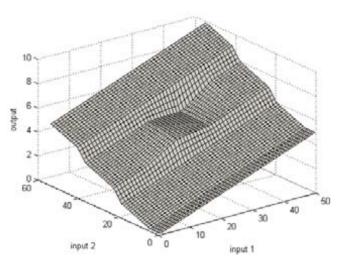
Dr. Edwin Lugnorer

(c)

יייישיאי w.u.at/staff/edwin

(d)




- Dynamic Curse of Dimensionality Reduction
 - » Next slide

Incremental Smoothing (Regularization)

» Rosemann, Brockmann, INS, 2012

Non-Smoothed Surface

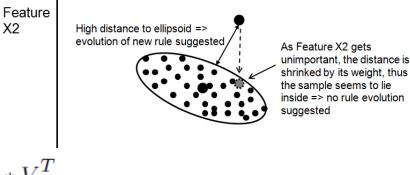
Smoothed Surface after Several Incremental Steps

• Convergence Analysis / Ensurance (FLEXFIS, PANFIS)

» Bounded Sub-optimality in the least squares sense (correction terms integration), Proofed bounds on the system error

Idea of Dynamic Smooth Dim. Reduction

Introduction of the Concept of Feature Weighting


(EFS Approach Independent, Lughofer, Pratama, ES, 2015)

- » Criterion: expected statistical contribution $Cont_i = \lim_{N \to \infty} |w_{i0}| \frac{\sum_{k=1}^{N} \Psi_i(\mathbf{x}_k)/N}{\sum_{i=1}^{C} \sum_{k=1}^{N} \Psi_i(\mathbf{x}_k)/N}$
- » Important Features => High Weights (in [0,1])
- » Update Feature Weights over Time => _______
 smooth change in the importance of features No crisp selection/deletion

 (as features may become important later again!)
- Integration of Feature Weights in Rule Evolution Criterion (Approach Dependent)
 - » In Gen-Smart-EFS: weights into Mahalnobis distance
 - » => re-scaled version of inverse covariance matrix:

 $diag(\lambda *) = diag(\Lambda_*) = diag(V^T * diag(\lambda) * V)$

$$\Sigma_i^{-1}(rescaled) = V * diag(\lambda *) * D * diag(\lambda *) * V^2$$

0.25

te 0.15

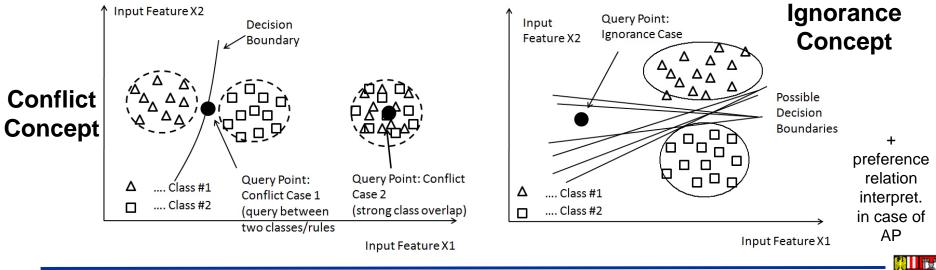
Feature X1

Original feature weights

O−Feature Weights at the end O−Features Weights at the beginning O−Features Weights in the middle

Feature Numb

Concepts for Increased Useability



- Interpretability: understanding the model components and behavior
 - » Position Paper:

Edwin Lughofer, Online Assurance of Interpretability Criteria in Evolving Fuzzy Systems -Achievements, New Concepts and Open Issues, *Information Sciences*, vol. 251, pp. 22-46, 2013

» Criteria examined: Distinguishability, Simplicity, Consistency, Coverage, Input/Output Behavior, Feature Weights, Rule Lengths, Rule Weights, Local Property, Interpretation of Consequents (red = essential for transparency)

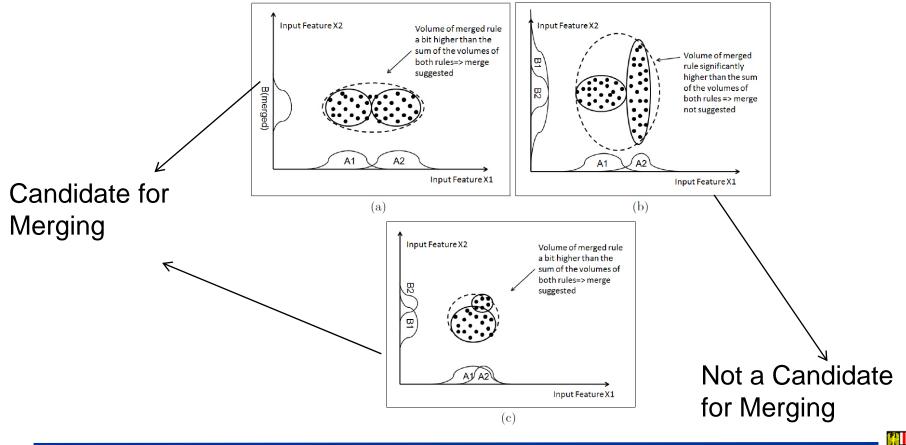
• **Reliability:** interpretation of model predictions (useable for AL)

http://www.flll.jku.at/staff/edwin

Merge Criteria for Assuring Distinguishability and Compactness

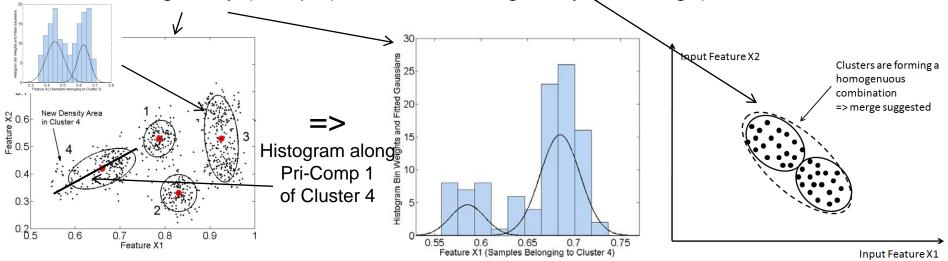
Final Criterion: AND Connection of 1, 2 and 3:

$$\begin{array}{l} 1\\ d(c_A, c_B) \leq \frac{\sum_{j=1}^{p} |c_{A;j} - c_{B;j}| (fac * \sigma_{A;j} + fac * \sigma_{B;j})}{\sum_{j=1}^{p} |c_{A;j} - c_{B;j}|} + \epsilon \begin{array}{l} \mbox{Touching (eps=0)}\\ \mbox{Slightly Overlapping (eps<0 big)}\\ \mbox{Close (eps>0 small)} \end{array} \end{array} \\ \begin{array}{l} \mbox{Euclidean distance between centers}\\ \mbox{2}\\ \mbox{$V_{merged} \leq p(V_A + V_B)$}\\ \mbox{$Dimensionality} \end{array} \\ \end{array} \\ \begin{array}{l} \mbox{Homogenuity Criterion (restricting the volume of the merged ellipsoid)}\\ \mbox{Touching (eps=0)}\\ \mbox{Slightly Overlapping (eps<0 big)}\\ \mbox{Slightly Overla$$


- 3 For Regression: Similarity of Consequents high (dihedral angle) $S_{cons}(\vec{w}_A, \vec{w}_B) \ge thresh$
- **3** For Classification: majority class in both rules are the same

Homogenuity Criterion: Impact

» Basic Idea: Merging of rules which are touching, slightly overlapping, very close to each other and fulfilling homogenuity criterion



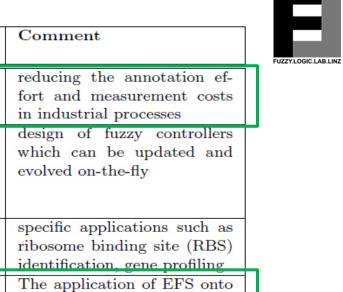
Concepts for Increased Useability

Single-Pass Active Learning

(Lughofer, PR / ES, 2012 for classification; Cernuda, Lughofer et al. 2014 for regression)

- » Reducing Annotation / Measurement Effort
- » Based on Reliability Concepts and Beyond (certainty-based sampling)
- (Towards) Plug-and-Play Functionality: Compensating "unlucky" initial settings of learning parameter(s)
 - » Possibility 1: adaptive learning parameters (e.g. steering rule evolution vs. Rule update) according to the current data stream characteristics
 - » Possibility 2: dynamic split-and-merge of clusters (rules), resolving intraheterogenuity (=> split) and inter-homogenuity (=> merge)

Dr. Edwin Lughofer

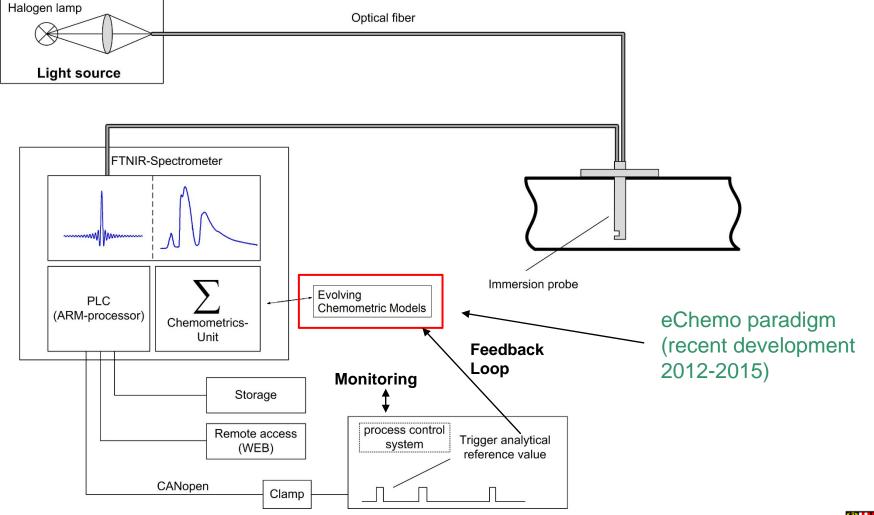


Applications of EFS and Some Results (from own Projects)

Applications	of EFS –	OverView
---------------------	----------	-----------------

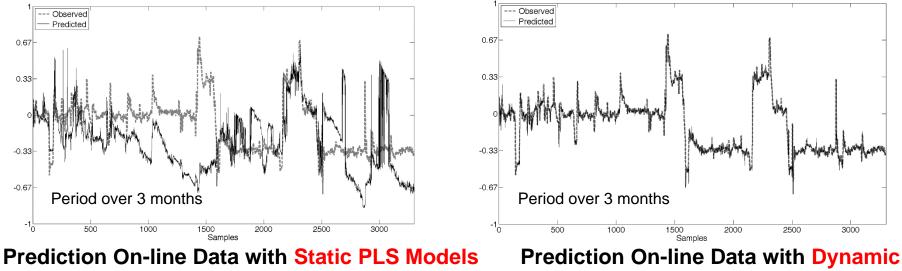
Application Type/Class (alphabetically)	EFS approaches (+ refs)	Comment
Active learning / human- machine interaction	FLEXFIS-Class, ^{191,192} EFC- AP, ⁸⁶ FLEXFIS-PLS ¹⁴⁸	reducing the annotation ef- fort and measurement costs in industrial processes
Adaptive on-line control	evolving PID and MRC con- trollers in, ¹⁹³ eFuMo, ¹¹⁵ rGK, ¹⁹⁴ self-evolving NFC, ¹⁰⁹ adap- tive controller in ¹³⁹	design of fuzzy controllers which can be updated and evolved on-the-fly
Bioinformatics	EFuNN ¹⁹⁵	specific applications such as ribosome binding site (RBS) identification, gene profiling
Chemometric Modeling and Process Control	FLEXFIS++; 38,104 the approach in ³⁷	The application of EFS onto processes in chemical indus- try (high-dim. NIR spectra)
EEG signals classification and processing	eTS , ¹⁹⁶ $epSNNr^{197}$	time-series modeling with the inclusion of time delays
Evolving Smart Sensors (eS- ensors)	eTS+ ¹⁶⁸ (gas industry), ^{169,198} (chem- ical process industry), FLEX- FIS ¹⁹⁹ and PANFIS ⁵³ (NOx emissions)	evolving predictive and fore- casting mod- els in order to substitute cost- intensive hardware sensors
Forecasting and prediction (general)	AHLTNM ¹²¹ (daily temp.), eT2FIS ⁶⁷ (traffic flow), eFPT ⁷² (Statlog from UCI), eFT ⁷³ and eMG ⁵¹ (short- term electricity load), FLEX- FIS+ ¹⁷² and GENEFIS ⁵⁴ (house prices), LOLIMOT inc. ¹²⁸ (maximum cylinder pressure), rGK ¹⁹⁴ (sales pre- diction) and others	various successful implemen- tations of EFS

Applications of EFS - Overview



	terre terre de la companya	
Financial domains	eT2FIS, ⁶⁷ evolving granular systems, ²⁰⁰ ePL, ²⁰¹ PAN- FIS, ⁵³ SOFNN ²⁰²	time-series modeling with the inclusion of time delays
Identification of dynamic	DENFIS, ¹¹⁴ TOPIC 67 TEL 117 FLEX	Mackey-Glass, Box-Jenkins,
benchmark problems	$eT2FIS$, ⁶⁷ $eTS+$, ¹¹⁷ $FLEX-FIS$, ¹⁰³ $SAFIS$, ¹²³ $SEIT2FNN$, ⁶⁶ $SOFNN^{202}$	etc.
On-line fault detection and	eMG for classification, ¹²⁷	EFS applied as SysID models
condition monitoring	$FLEXFIS++,^{35,203} rGK^{194}$	for extracting residuals
On-line monitoring	$eTS+^{168}$ (gas industry)	supervision of system behav-
		iors
Robotics	$eTS+^{204}$	in the area of self-localization
Time-series modeling	DENFIS, ²⁰⁵ ENFM ¹¹⁹ and	local modeling of multiple
	eTS-LS-SVM ⁵⁸ (sun spot)	time-series versus instance-
		based learning
User behavior identification	eClass and eTS, ^{206,207}	analysis of the user's behav-
	eTS+, ²⁰⁸ FPA ¹³⁶	iors in multi-agent systems,
		on computers, indoor envi-
		ronments etc.
Video processing	eTS, eTS + 209,210	including real-time object id.,
		obstacles tracking and nov-
		elty detection
Visual quality control	EFC-AP, ⁹² FLEXFIS-	image classification tasks
	$Class^{211}$, ⁸⁰ p $Class^{89}$	based on feature vectors

Evolvable Chemometric Models in Chemical Production Systems



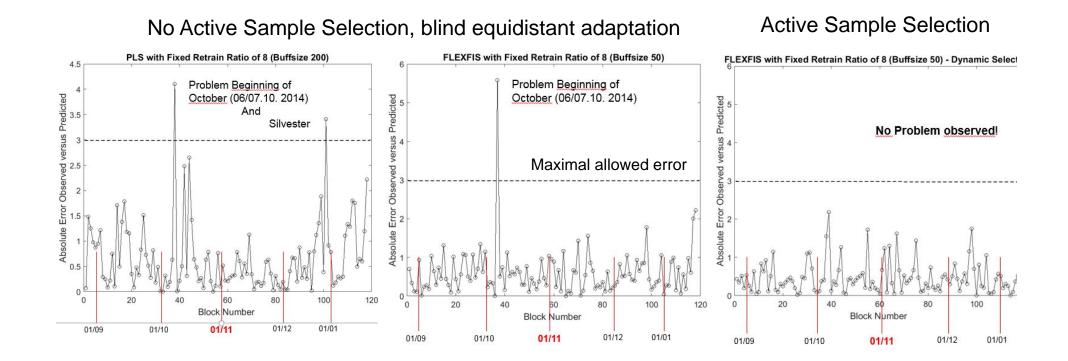
Some Results (eChemo paradigm)

(Cernuda, Lughofer et al, ACA 2012 - EFS + PLS for Chemo models)

Dynamic Adaptation of Chemometric Models in **Viscose Production**

(State of the Art)

Evolving Fuzzy Models (eChemo paradigm)


Coupling with Active Learning => **Reduction of** Measurements + Model Updates by approx. 98% => Significant Cost Reduction (Cernuda, Lughofer et. al, CILS, 2014)

ZZY.LOGIC.LAB.LIN

Active Learning Results in On-line Melamin Resine Production (Sliding Window Based Approach)

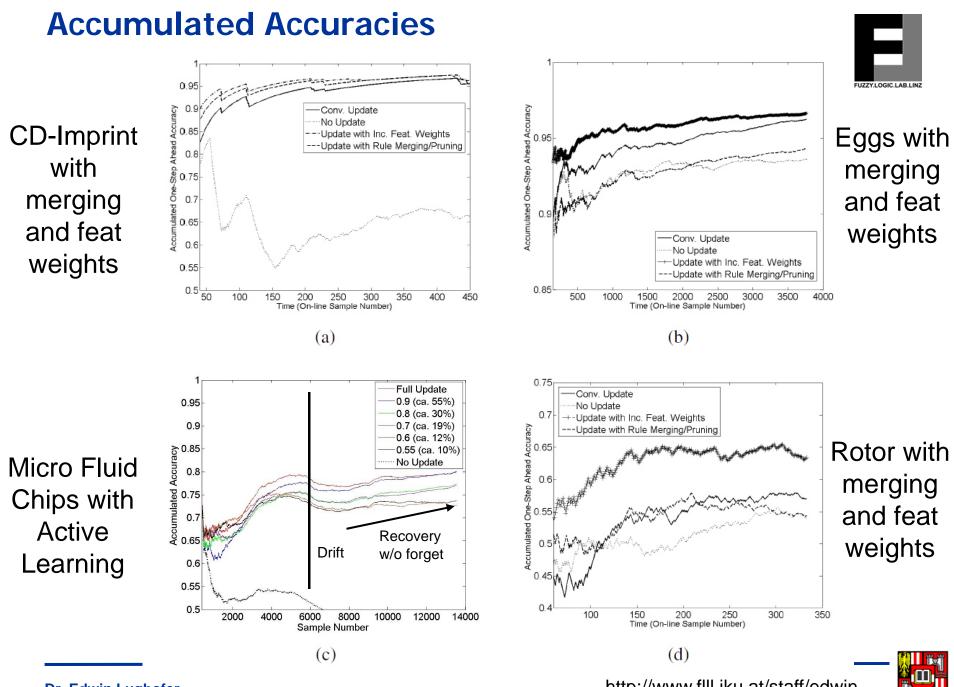
Savings: ~13% (~87% Samples used for Selection)

Automatic On-line Surface Inspection with Adaptivity of Image Classifiers

(binary: good/bad reward) Eitzinger, Lughofer et. al, MVA, 2010 Lughofer, Smith et al., IEEE SMC-A, 2009 Getting Rid of Manual Checks! External Process Information Regions of Aggregated Interest (ROI) Features Feature Good Good Adaptive Feature Calculation vector #1 **Original Image** Contrast Image Classifier Adaptive Feature Feature Α Calculation vector #2 Classifier Ensemble В Classifier Classifier C Bad Bad Feature Adaptive Feature **Training Signal** Calculation vector #n Low-level processing (application-specific) Additional external Information per ROI Feedback Loop for Classifier Adaptation (based on native good/bad reward)

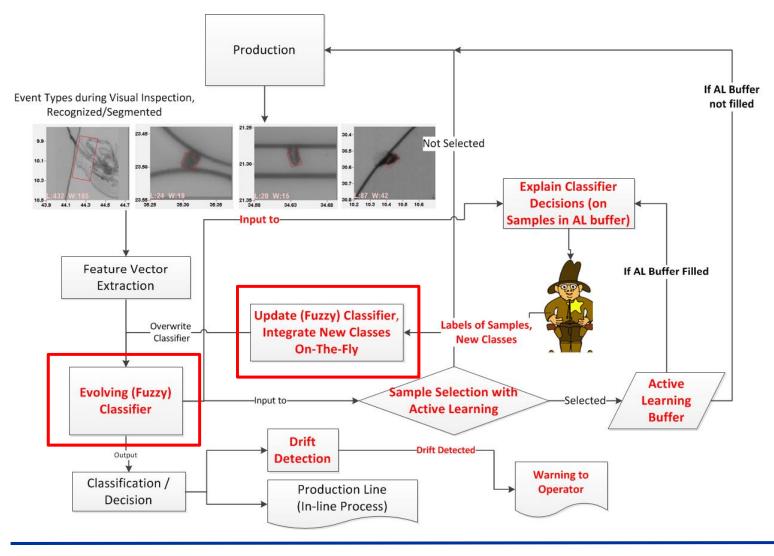
Achievements:

- Common Interfaces between Images and Classifiers **》**
- **Extracting Arbitrary Regions of Interests with Clustering Methods 》**
- Machine-learning Classifiers with Accuracy > 99% (on three real-world **》** surface inspection scenarios)
- **Resolving Contradicting Input** from Several Operators (Ensembles) **》**
- **On-Line Adaptation and Evolution** of Image Classifiers (with EFC) **》**


On-line Surface Inspection - Results

(Lughofer, Eitzinger, Guardiola, On-line Quality Control, in: Learning in Non-Stationary Environments, Springer, New York, 2012)

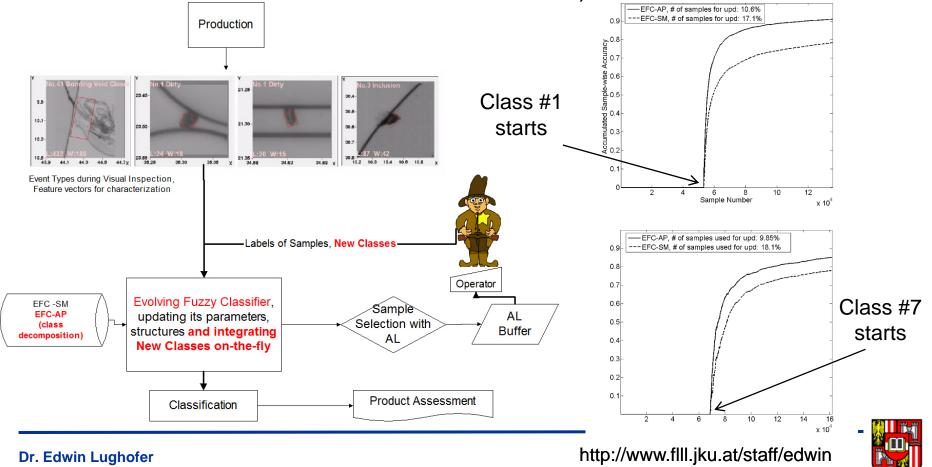
		CD imprint (#2)	Eggs	Rotor	Bearing
	Static Image Classifiers				
	(trained in off-line mode)				
	eVQ-Class variant A	75.69	91.55	66.67	63.75
	eVQ-Class variant B	88.82	90.11	66.67	64.65
	EFC SM	78.82	95.20	66.67	60.73
	EFC MM	73.53	95.89	54.67	55.59
	k-NN	79.61	91.51	53.33	58.30
	CART	78.82	91.78	52.00	65.26
	Evolved Image Classifiers				
	(updated in on-line mode)				
	eVQ-Class variant A	89.22 (+13.5)	91.12(-0.4)	86.67 (+20)	67.67 (+3.9)
	eVQ-Class variant B	90.39 (+1.6)	93.33 (+3.2)	86.67 (+20)	67.98 (+3.3)
	EFC SM	78.82 (+0.0)	96.21 (+1.0)	64.00 (-2.6)	63.14 (+2.4)
Very clour retraining	EFC MM	87.65 (+14.1)	97.19 (+1.3)	78.67 (+24)	65.56 (+10.0)
Very slow – retraining on each sample, just	<i>k</i> -NN (re-trained)	90.98 (+11.4)	96.06 (+4.6)	74.67 (+21.3)	59.52 (+1.2)
for benchmark	CART (re-trained)	90.59 (+11.8)	97.02 (+5.2)	52.00 (+0.0)	69.18 (+3.9)
purposes	+max %	14.1	5.2	21.3	10.0
	Data Set EFC SM EFC	MM EECAD	VO Class	NO Clas	
	Data Set $EFC SM$ EFC CD imprint 62.0 ± 2.5 73.1 ± 10^{-10}		$\frac{VQ-Class}{64.1\pm2.4}$	eVQ-Class	s B CA 1.6 75.81 ±
problem L	CD mpm $[02.0 \pm 2.3]$ 75.1 \pm	$-1.102.0 \pm 1.3$	04.1 ± 2.4	14.9⊥	1.0 / 5.01 1



Dr. Edwin Lughofer

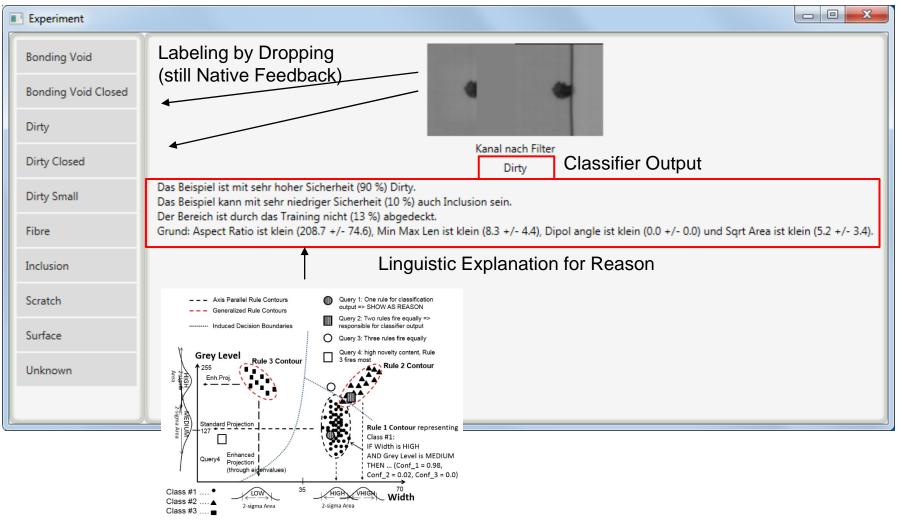
http://www.flll.jku.at/staff/edwin

On-line Human-Machine Interaction @ VISystems with Evolving Fuzzy Classifiers, AL and Drift Detection embedded (Weigl, Lughofer et al., MVA, 2015)



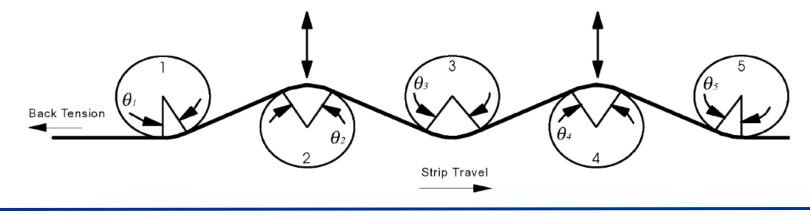
FUZZY.LOGIC.LAB.LINZ

"Adding New Event Types/Classes On-the-Fly" (On-line Visual Inspection) Lughofer, Weigl et al., ASOC, 2015

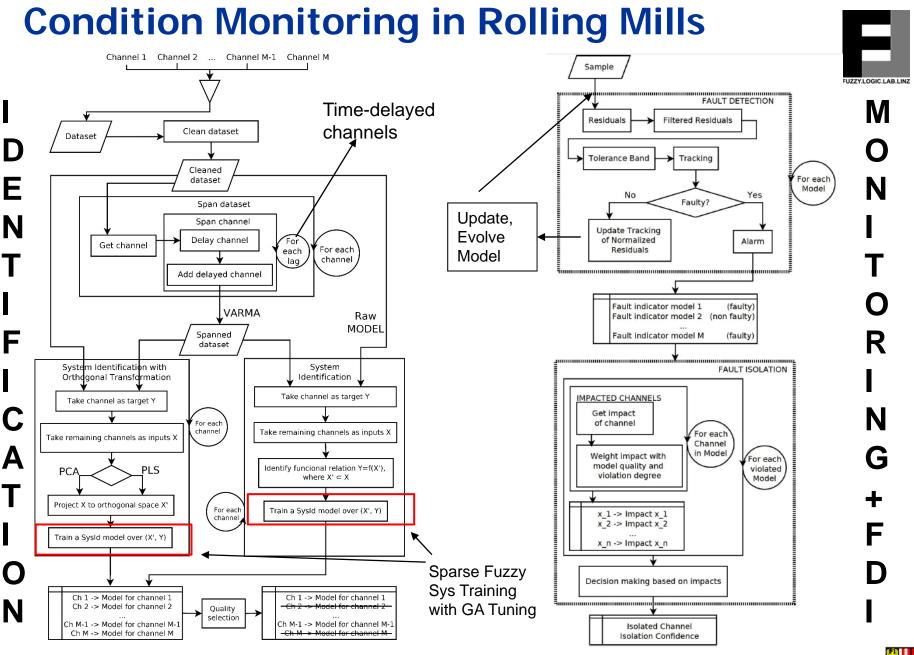

- Operator labels from time to time new samples within active learning cycles => new classes may be defined
- => Extension in EFCs, class decomposition in EFC-AP favorable (K new binary classifiers introduced)

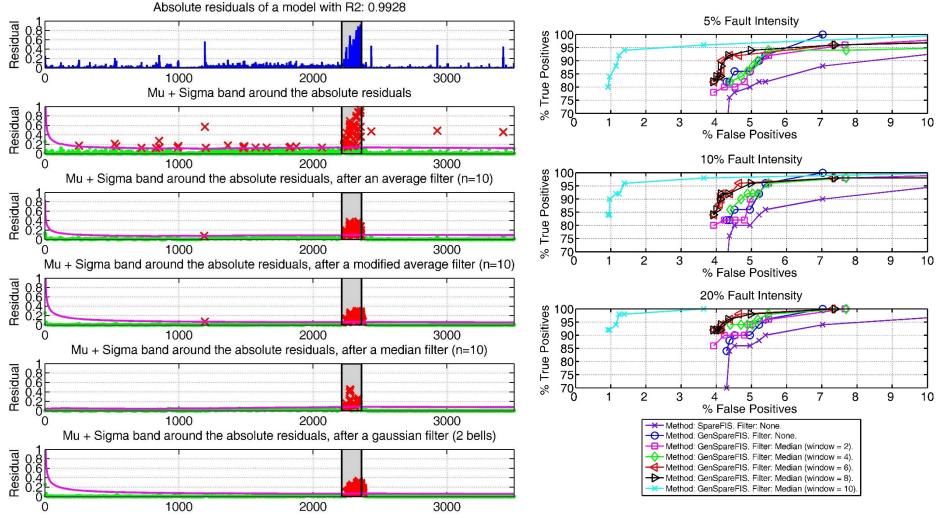
Explaining Decisions Linguistically (Enhanced Model Output Interpretation)

Lughofer, Richter et al., ESWA, submitted, 2016



Condition Monitoring in Rolling Mills

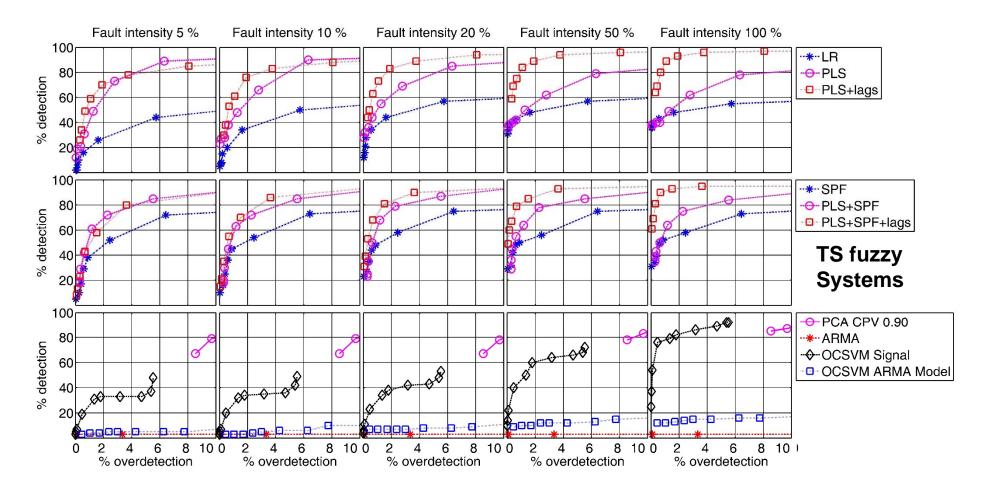

Serdio, Lughofer et al, INS, 2014/15 (FD + FI) Serdio, Lughofer et al, INF, 2014 (dynamic models with lags)



Results from Condition Monitoring

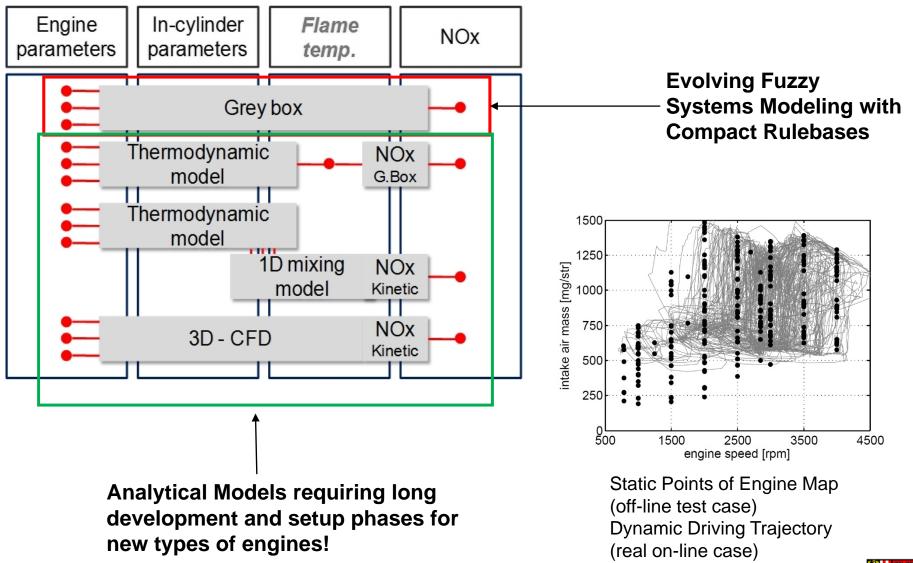
Effect of Adaptive Filters

Effect of Genetic Tuning

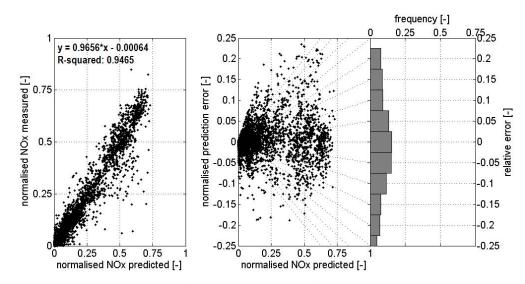


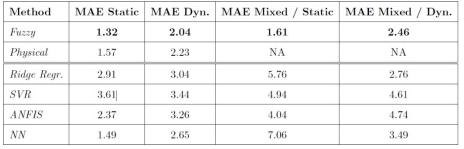
Results from Condition Monitoring

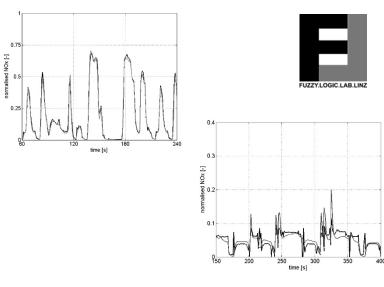
Effect of Lags

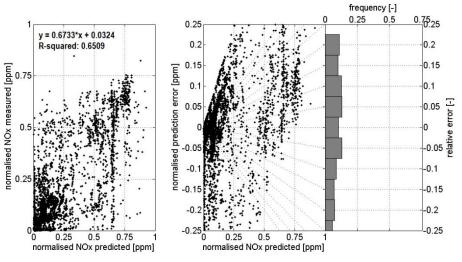


NOx Emission Modeling (eSensor)


Lughofer, Guardiola et al., ASOC, 2011

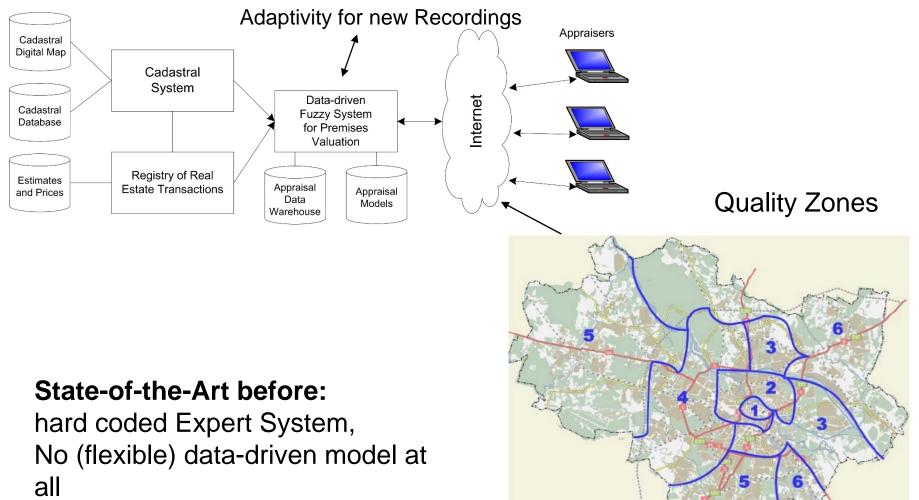



Results eSensor for NOx (separate test set)



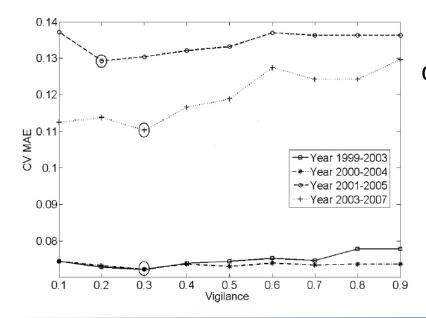
Outperformance of analytical model

Error Analysis Static Fuzzy Systems


Error Analysis Evolving Fuzzy Systems

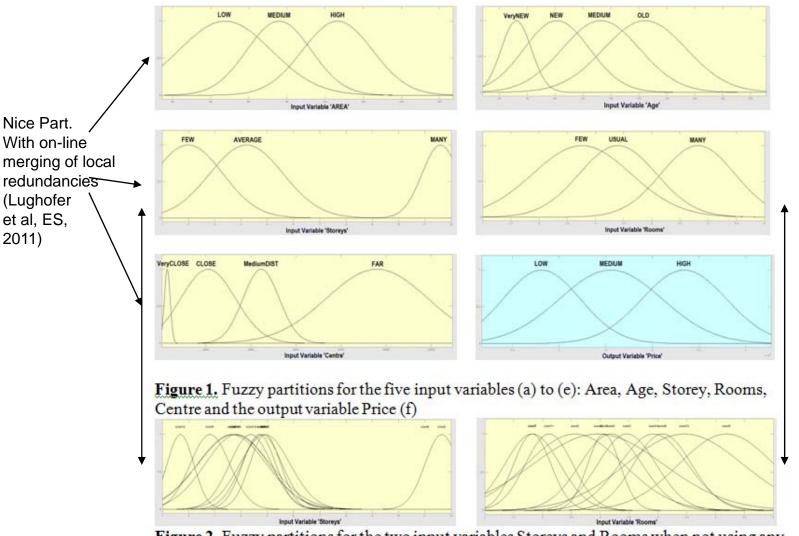
Adaptive Dynamic House Pricing

(Lughofer, Trawinski, Trawinski, Information Sciences, 2011)



Results from Prediction of House Prices

Tr. / Test	FLEXFIS	FLEXFIS+pr.	Expert	# Rules	# R. pr.
1998-2002 / 2003	0.049	0.049	0.078	9	9
1999-2003 / 2004	0.072	0.074	0.106	12	10
2000-2004 / 2005	0.072	0.068	0.121	12	9
2001-2005 / 2006	0.130	0.125	0.134	10	8
2002-2006 / 2007	0.089	0.089	0.138	14	10
2003-2007 / 2008	0.110	0.115	0.145	13	7



Default vigilance of 0.3 optimal in 3 out of 4 cases!

Tr. / Test	evolved TS	equiv. Mamdani
1998-2002 / 2003	0.049	0.059
1999-2003 / 2004	0.072	0.113
2000-2004 / 2005	0.072	0.093
2001-2005 / 2006	0.130	0.158
2002-2006 / 2007	0.089	0.126
2003-2007 / 2008	0.110	0.118

Model Insights House Price Prediction

Figure 2. Fuzzy partitions for the two input variables <u>Storeys</u> and Rooms when not using any merging/pruning option in FLEXFIS – compare with those in Figure 1.

http://www.flll.jku.at/staff/edwin

Rules House Price Prediction

- Rule 1: If Area is LOW and Age is NEW and Storeys is AV and Rooms is FEW and Centre is CLOSE Then Price is LOW
- Rule 2: If Area is LOW and Age is VeryNEW and Storeys is MANY and Rooms is FEW and Centre is CLOSE Then Price is LOW
- Rule 3: If Area is LOW and Age is NEW and Storeys is AV and Rooms is USUAL and Centre is CLOSE Then Price is LOW
- Rule 4: If Area is LOW and Age is OLD and Storeys is AV and Rooms is FEW and Centre is CLOSE Then Price is LOW
- Rule 5: If Area is LOW and Age is NEW and Storeys is FEW and Rooms is FEW and Centre is FAR Then Price is LOW
- Rule 6: If Area is LOW and Age is MEDIUM and Storeys is MANY and Rooms is FEW and Centre is VeryCLOSE Then Price is MEDIUM
- Rule 7: If Area is MEDIUM and Age is NEW and Storeys is FEW and Rooms is USUAL and Centre is MEDIUMDist Then Price is MEDIUM
- Rule 8: If Area is HIGH and Age is MEDIUM and Storeys is AV and Rooms is MANY and Centre is CLOSE Then Price is HIGH
- Rule 9: If Area is MEDIUM and Age is MEDIUM and Storeys is AV and Rooms is USUAL and Centre is CLOSE Then Price is HIGH

Thank you for your attention!

