
The art of Programming 

Evolutionary Algorithms 

 
Juan-Julián Merelo. 

@jjmerelo 
U. Granada (Spain) 

 



Art of ProgrammingEvolutionary Algorithms/2 

Get out and 
smell the air 
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New is always better 
Programming paradigms are changing on a daily 

basis 

NoSQL 

Cloud computing 

Internet of Things 

Map/reduce 

GPGPU 
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Form 
should fit 
function 
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And we 
should 

adapt to the 
new 
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We should be able towrite 
publishable papers 
artifacts painlessly 
through efficient, 

maintainable, scientific 
programming 
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Mind your 

environment 



Art of ProgrammingEvolutionary Algorithms/8 

Open source 
your code and 
data 
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Aw, maaaan! 
● Open source first, then program 

● Scientific code should be born free. 

● Science must be reproductible. 

● Easier for others to compare with your 
approach 

● Increased H 
– Scientist heaven! 

● Manifest hidden assumptions. 

● If you don't share  you don't care! 
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Minimize bugs 
via  

test-driven 
programming 
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Tests before code 
● What do you want your code to do? 

● Mutate a bit string, for instance. 

● Write the test 
● Is the result from mutation different from the 

original? 
– Of course! 
– But will it be even if you change an upstream function? 

Or the representation? 

● Does it change all bits in the same proportion 
(including first and last → corner cases)? 
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Control 
the 

source of 
your 

power 
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Source control systems save 
the day 

● Source code management systems allow 
● Checkpoints 

● Stygmergic interaction 

● Individual responsability over code changes 

● Branches 

● Distributed are in: git, mercurial, bazaar 

● Centralized are out: subversion, cvs. 

● Instant backup! 

Metaheuristi
cs at work! 
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Code complete 

1) Check out code/Update code 

2) Make changes 

3) Commit changes (and push to central 

repository) 
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Go with the Joneses 
Use GitHub: http://github.com 
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Integrate 
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Pushing is not the end of the 
story 

● Tests must be run, compilations made, checks 
and balances checked and balanced. 

● Use Travis or Jenkins 
● If it's good enough for software developers, it's 

good enough for scientists! 

● All this is free if you open source your code 
● Back to #2 
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 Be language 
agnostic 
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Language shapes thought 
● Don't believe the hype: 

● Compiled languages are faster... NOT 

● There is no free lunch. 

● Avoid programming in C in every language you 
use 

● Consider scripting languages: Python, Perl, 
Lua, Ruby, Clojure, Javascript... interpreted 
languages are faster. 

Well, they are 
at running 

stuff... mostly 
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Language agnoticism at its best 
 

Evolving Regular Expressions for GeneChip 
Probe Performance Prediction 

 

http://www.springerlink.com/content/j3x8r108x757876w/ 

 

The regular expresions are coded in AWK scripts: 

Although this may seem complex, gawk (Unix’ free 
interpreted pattern scanning and processing 

       
 

   

Unique and 
beautiful usage 

of English 
possessive! 

http://www.springerlink.com/content/j3x8r108x757876w/
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Programming speed > 
program speed 
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Scientists, not software 
engineers 

● Our deadlines are for papers – not for software 
releases (but we have those, too). 

● What should be optimized is speed-to-publish. 

● Makes no sense to spend 90% time 
programming – 5% writing the paper. 

● Scripting languages rock 
● and minimize time-to-publish. 
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Perl faster than Java? 
Algorithm::Evolutionary, a flexible Perl module for 

evolutionary computation 

http://www.springerlink.com/content/8h025g83j0q68270/ 

● Class-by-class, Perl library much more compact 
● Less code to write. 

– More time to write the paper, perform experiments.... 

● In pure EC code, Algorithm::Evolutionary was 
faster than ECJ. 

http://www.springerlink.com/content/8h025g83j0q68270/
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Don't assume: 
 
 
 
 

measure 
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Performance matters 
● Basic measure: CPU time as measured by 
time 

jmerelo@penny:~/proyectos/CPAN/Algorithm-
Evolutionary/benchmarks$ time perl onemax.pl 

0; time: 0.003274 

1; time: 0.005438 

[...] 

498; time: 1.006539 

499; time: 1 00884 
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There's always 
a better 

algorithm/ 
data structure 
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And differences are huge 
● Sort algorithms are an example 

● Plus, do you need to sort the population? 

● Cache fitness evaluations 
● Cache them permanently in a database? 

– Measure how much fitness evaluation takes 

● Thousand ways of computing fitness 
● How do you compute the MAXONES? 

– $fitness_of{$chromosome} = ($copy_of =~ tr/1/0/); 

● Algorithms and data structures interact. 
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Case Study: EAs as software 
programs 

Time analysis of standard evolutionary algorithms 
as software programs 

http://dx.doi.org/10.1109/ISDA.2011.6121667 

 

Programs implementing EAs are analyzed; huge 
improvements can be achieved by changing 

random number generators or memory usage 
patterns 

Implementation matters! 

 

 

http://dx.doi.org/10.1109/ISDA.2011.6121667
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Learn the tricks of the trade 
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Two trades 
● Evolutionary algorithms 

● Become one with your algorithm. 
– It does not work, but for a different reason that what you 

think it does 

● Programming languages. 
● What function is better implemented? 

● Is there yet another library to do sorting? 

● Where should you go if there's a problem? 

● Even a third trade: programming itself. 
 

This is the Zen! 
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Case study: sort 
● Sorting is routinely used in evolutinary 

algorithms 
● Roulette wheel, rank-based algorithms 

● Faster sorts (in Perl): 
http://raleigh.pm.org/sorting.html 

● Sorting implies comparing 

● Orcish Manoeuver, Schwartzian transform 

● Sort::Key, fastest ever 
http://search.cpan.org/dist/Sort-Key/ 

     
        

    

http://raleigh.pm.org/sorting.html
http://search.cpan.org/dist/Sort-Key/
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 Make 
experiment 
processing 

easy 



Art of ProgrammingEvolutionary Algorithms/34 

Avoid drowning in data 
● Every experiment produces megabytes of data 

● Timestamps, vectors, arrays, hashes. 

● Difficult to understand after some time. 

● Use serialization languages for storing data 
● YAML: Yet another markup language. 

● JSON: Javascript Object Notation. 

● XML: eXtensible Markup language. 

● [Name your own]. 
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Case study: Mastermind 
Entropy-Driven Evolutionary Approaches to the 

Mastermind Problem 
Carlos Cotta et al., http://www.springerlink.com/content/d8414476w2044g2m/ 

● Output uses YAML. 

● Includes: 
● Experiment parameters. 

● Per-run and per-generation data. 

● Final population and run time. 

Open source! (Follow #2!) 
 

 

http://github.com/JJ/algorithm-mastermind
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When 
everything 

fails 
 visualize 
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backup 
your data 
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Better safe than unpublished 
● Get an old computer, and backup everything 

there. 
● If you do open science, you get that for free! 

● In some cases, create virtual machines to 
reproduce one paper's environment 

● Do you think gcc 3.2.3 will compile your old code? 

● Use rsync, bacula or simply cp. 

● It's not if your hard disk will fail, it's when. 

Cloud solutions are OK but backup that too  
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Keep stuff 
together 
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Where did I left my keys? 
● Paper: program + data + graphics + experiment 

logs + text + revisions + referee reports + 
presentations. 

●  Experiments have to be rerun, graphics 
replotted, papers rewritten. 

● Use logs to know which parameters produced 
which data that produced which graph. 

● And put them all in the same directory tree, or 
use sensible naming conventions. 
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Consider literate programming 
● Literate programming means keeping program 

and document describing it and results in the 
same place. 

● SWeave and Knitr integrate LaTeX and R in the 
same document. 

● Check availability for your favorite platform. 

● Not the most popular way of writing papers. 

● But check also 
http://www.executablepapers.com/ 

http://www.executablepapers.com/
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Keep a balance between 
fashions and efficiency 
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Nurture your 
code 
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A moment of joy, a lifetime of 
grief 

● Run tests periodically, or when there is a major 
upgrade of interpreter, upstream library or OS. 

● Can be automated. 
– See #6. 

● Maintain a roadmap of releases 
● Remember this is free software, engage the 

community. 

● Your research is intended for the whole wide 
world. 
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Publish, don't perish! 
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Check me out at: 
 

http://twitter.com/jjmerelo 

http://goo.gl/OFou1 

 

See you  in Evostar 2014, Baeza: 
http://evostar.org! 

 

Or camels! 

(no cats were harmed preparing this 
presentation) 

Any (more) 

questions? 

http://goo.gl/OFou1
http://evostar.org/
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