
The art of Programming 

Evolutionary Algorithms 

 
Juan-Julián Merelo. 

@jjmerelo 
U. Granada (Spain) 

 



Art of ProgrammingEvolutionary Algorithms/2 

Get out and 
smell the air 



Art of ProgrammingEvolutionary Algorithms/3 

New is always better 
Programming paradigms are changing on a daily 

basis 

NoSQL 

Cloud computing 

Internet of Things 

Map/reduce 

GPGPU 



Art of ProgrammingEvolutionary Algorithms/4 

Form 
should fit 
function 



Art of ProgrammingEvolutionary Algorithms/5 

And we 
should 

adapt to the 
new 



Art of ProgrammingEvolutionary Algorithms/6 

We should be able towrite 
publishable papers 
artifacts painlessly 
through efficient, 

maintainable, scientific 
programming 



Art of ProgrammingEvolutionary Algorithms/7 

  
Mind your 

environment 



Art of ProgrammingEvolutionary Algorithms/8 

Open source 
your code and 
data 



Art of ProgrammingEvolutionary Algorithms/9 

Aw, maaaan! 
● Open source first, then program 

● Scientific code should be born free. 

● Science must be reproductible. 

● Easier for others to compare with your 
approach 

● Increased H 
– Scientist heaven! 

● Manifest hidden assumptions. 

● If you don't share  you don't care! 



Art of ProgrammingEvolutionary Algorithms/10 

Minimize bugs 
via  

test-driven 
programming 



Art of ProgrammingEvolutionary Algorithms/11 

Tests before code 
● What do you want your code to do? 

● Mutate a bit string, for instance. 

● Write the test 
● Is the result from mutation different from the 

original? 
– Of course! 
– But will it be even if you change an upstream function? 

Or the representation? 

● Does it change all bits in the same proportion 
(including first and last → corner cases)? 

       



Art of ProgrammingEvolutionary Algorithms/12 

Control 
the 

source of 
your 

power 



Art of ProgrammingEvolutionary Algorithms/13 

Source control systems save 
the day 

● Source code management systems allow 
● Checkpoints 

● Stygmergic interaction 

● Individual responsability over code changes 

● Branches 

● Distributed are in: git, mercurial, bazaar 

● Centralized are out: subversion, cvs. 

● Instant backup! 

Metaheuristi
cs at work! 



Art of ProgrammingEvolutionary Algorithms/14 

Code complete 

1) Check out code/Update code 

2) Make changes 

3) Commit changes (and push to central 

repository) 



Art of ProgrammingEvolutionary Algorithms/15 

Go with the Joneses 
Use GitHub: http://github.com 



Art of ProgrammingEvolutionary Algorithms/16 

Integrate 



Art of ProgrammingEvolutionary Algorithms/17 

Pushing is not the end of the 
story 

● Tests must be run, compilations made, checks 
and balances checked and balanced. 

● Use Travis or Jenkins 
● If it's good enough for software developers, it's 

good enough for scientists! 

● All this is free if you open source your code 
● Back to #2 



Art of ProgrammingEvolutionary Algorithms/18 

 Be language 
agnostic 



Art of ProgrammingEvolutionary Algorithms/19 

Language shapes thought 
● Don't believe the hype: 

● Compiled languages are faster... NOT 

● There is no free lunch. 

● Avoid programming in C in every language you 
use 

● Consider scripting languages: Python, Perl, 
Lua, Ruby, Clojure, Javascript... interpreted 
languages are faster. 

Well, they are 
at running 

stuff... mostly 



Art of ProgrammingEvolutionary Algorithms/20 

Language agnoticism at its best 
 

Evolving Regular Expressions for GeneChip 
Probe Performance Prediction 

 

http://www.springerlink.com/content/j3x8r108x757876w/ 

 

The regular expresions are coded in AWK scripts: 

Although this may seem complex, gawk (Unix’ free 
interpreted pattern scanning and processing 

       
 

   

Unique and 
beautiful usage 

of English 
possessive! 

http://www.springerlink.com/content/j3x8r108x757876w/


Art of ProgrammingEvolutionary Algorithms/21 

Programming speed > 
program speed 



Art of ProgrammingEvolutionary Algorithms/22 

Scientists, not software 
engineers 

● Our deadlines are for papers – not for software 
releases (but we have those, too). 

● What should be optimized is speed-to-publish. 

● Makes no sense to spend 90% time 
programming – 5% writing the paper. 

● Scripting languages rock 
● and minimize time-to-publish. 



Art of ProgrammingEvolutionary Algorithms/23 

Perl faster than Java? 
Algorithm::Evolutionary, a flexible Perl module for 

evolutionary computation 

http://www.springerlink.com/content/8h025g83j0q68270/ 

● Class-by-class, Perl library much more compact 
● Less code to write. 

– More time to write the paper, perform experiments.... 

● In pure EC code, Algorithm::Evolutionary was 
faster than ECJ. 

http://www.springerlink.com/content/8h025g83j0q68270/


Art of ProgrammingEvolutionary Algorithms/24 

Don't assume: 
 
 
 
 

measure 



Art of ProgrammingEvolutionary Algorithms/25 

Performance matters 
● Basic measure: CPU time as measured by 
time 

jmerelo@penny:~/proyectos/CPAN/Algorithm-
Evolutionary/benchmarks$ time perl onemax.pl 

0; time: 0.003274 

1; time: 0.005438 

[...] 

498; time: 1.006539 

499; time: 1 00884 

   

 

  

  

  



Art of ProgrammingEvolutionary Algorithms/26 



Art of ProgrammingEvolutionary Algorithms/27 

There's always 
a better 

algorithm/ 
data structure 



Art of ProgrammingEvolutionary Algorithms/28 

And differences are huge 
● Sort algorithms are an example 

● Plus, do you need to sort the population? 

● Cache fitness evaluations 
● Cache them permanently in a database? 

– Measure how much fitness evaluation takes 

● Thousand ways of computing fitness 
● How do you compute the MAXONES? 

– $fitness_of{$chromosome} = ($copy_of =~ tr/1/0/); 

● Algorithms and data structures interact. 
      



Art of ProgrammingEvolutionary Algorithms/29 

Case Study: EAs as software 
programs 

Time analysis of standard evolutionary algorithms 
as software programs 

http://dx.doi.org/10.1109/ISDA.2011.6121667 

 

Programs implementing EAs are analyzed; huge 
improvements can be achieved by changing 

random number generators or memory usage 
patterns 

Implementation matters! 

 

 

http://dx.doi.org/10.1109/ISDA.2011.6121667


Art of ProgrammingEvolutionary Algorithms/30 

Learn the tricks of the trade 



Art of ProgrammingEvolutionary Algorithms/31 

Two trades 
● Evolutionary algorithms 

● Become one with your algorithm. 
– It does not work, but for a different reason that what you 

think it does 

● Programming languages. 
● What function is better implemented? 

● Is there yet another library to do sorting? 

● Where should you go if there's a problem? 

● Even a third trade: programming itself. 
 

This is the Zen! 



Art of ProgrammingEvolutionary Algorithms/32 

Case study: sort 
● Sorting is routinely used in evolutinary 

algorithms 
● Roulette wheel, rank-based algorithms 

● Faster sorts (in Perl): 
http://raleigh.pm.org/sorting.html 

● Sorting implies comparing 

● Orcish Manoeuver, Schwartzian transform 

● Sort::Key, fastest ever 
http://search.cpan.org/dist/Sort-Key/ 

     
        

    

http://raleigh.pm.org/sorting.html
http://search.cpan.org/dist/Sort-Key/


Art of ProgrammingEvolutionary Algorithms/33 

 Make 
experiment 
processing 

easy 



Art of ProgrammingEvolutionary Algorithms/34 

Avoid drowning in data 
● Every experiment produces megabytes of data 

● Timestamps, vectors, arrays, hashes. 

● Difficult to understand after some time. 

● Use serialization languages for storing data 
● YAML: Yet another markup language. 

● JSON: Javascript Object Notation. 

● XML: eXtensible Markup language. 

● [Name your own]. 



Art of ProgrammingEvolutionary Algorithms/35 

Case study: Mastermind 
Entropy-Driven Evolutionary Approaches to the 

Mastermind Problem 
Carlos Cotta et al., http://www.springerlink.com/content/d8414476w2044g2m/ 

● Output uses YAML. 

● Includes: 
● Experiment parameters. 

● Per-run and per-generation data. 

● Final population and run time. 

Open source! (Follow #2!) 
 

 

http://github.com/JJ/algorithm-mastermind


Art of ProgrammingEvolutionary Algorithms/36 

When 
everything 

fails 
 visualize 



Art of ProgrammingEvolutionary Algorithms/37 

backup 
your data 



Art of ProgrammingEvolutionary Algorithms/38 

Better safe than unpublished 
● Get an old computer, and backup everything 

there. 
● If you do open science, you get that for free! 

● In some cases, create virtual machines to 
reproduce one paper's environment 

● Do you think gcc 3.2.3 will compile your old code? 

● Use rsync, bacula or simply cp. 

● It's not if your hard disk will fail, it's when. 

Cloud solutions are OK but backup that too  



Art of ProgrammingEvolutionary Algorithms/39 

Keep stuff 
together 



Art of ProgrammingEvolutionary Algorithms/40 

Where did I left my keys? 
● Paper: program + data + graphics + experiment 

logs + text + revisions + referee reports + 
presentations. 

●  Experiments have to be rerun, graphics 
replotted, papers rewritten. 

● Use logs to know which parameters produced 
which data that produced which graph. 

● And put them all in the same directory tree, or 
use sensible naming conventions. 



Art of ProgrammingEvolutionary Algorithms/41 

Consider literate programming 
● Literate programming means keeping program 

and document describing it and results in the 
same place. 

● SWeave and Knitr integrate LaTeX and R in the 
same document. 

● Check availability for your favorite platform. 

● Not the most popular way of writing papers. 

● But check also 
http://www.executablepapers.com/ 

http://www.executablepapers.com/


Art of ProgrammingEvolutionary Algorithms/42 

Keep a balance between 
fashions and efficiency 



Art of ProgrammingEvolutionary Algorithms/43 

Nurture your 
code 



Art of ProgrammingEvolutionary Algorithms/44 

A moment of joy, a lifetime of 
grief 

● Run tests periodically, or when there is a major 
upgrade of interpreter, upstream library or OS. 

● Can be automated. 
– See #6. 

● Maintain a roadmap of releases 
● Remember this is free software, engage the 

community. 

● Your research is intended for the whole wide 
world. 



Art of ProgrammingEvolutionary Algorithms/45 

Publish, don't perish! 



Art of ProgrammingEvolutionary Algorithms/46 

Check me out at: 
 

http://twitter.com/jjmerelo 

http://goo.gl/OFou1 

 

See you  in Evostar 2014, Baeza: 
http://evostar.org! 

 

Or camels! 

(no cats were harmed preparing this 
presentation) 

Any (more) 

questions? 

http://goo.gl/OFou1
http://evostar.org/

	The art of Programming Evolutionary Algorithms��Juan-Julián Merelo.�@jjmerelo�U. Granada (Spain)�
	Get out and smell the air
	New is always better
	Form should fit function
	And we should adapt to the new
	We should be able towrite publishable papers artifacts painlessly through efficient, maintainable, scientific programming
	 �Mind your environment
	Open source your code and data
	Aw, maaaan!
	Minimize bugs via �test-driven programming
	Tests before code
	Control the source of your power
	Source control systems save the day
	Code complete
	Go with the Joneses
	Integrate
	Pushing is not the end of the story
	 Be language agnostic
	Language shapes thought
	Language agnoticism at its best
	Programming speed > program speed
	Scientists, not software engineers
	Perl faster than Java?
	Don't assume:�����measure
	Performance matters
	Going a bit deeper: profilers
	There's always a better algorithm/�data structure
	And differences are huge
	Case Study: EAs as software programs
	Learn the tricks of the trade
	Two trades
	Case study: sort
	 Make experiment processing easy
	Avoid drowning in data
	Case study: Mastermind
	When everything fails
	backup your data
	Better safe than unpublished
	Keep stuff together
	Where did I left my keys?
	Consider literate programming
	Keep a balance between fashions and efficiency
	Nurture your code
	A moment of joy, a lifetime of grief
	Publish, don't perish!
	(no cats were harmed preparing this presentation)

