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MACHINE LEARNING

SUPERVISED LEARNING: Algorithms and methods for discovering (alleged)
dependencies and regularities in a domain of interest, expressed through
appropriate models, from specific observations or examples.

induction  learning .. used for

principle algorithm = prediction, classifiction

= adaptation, control

= systems analysis
background knowledge =———> MODEL
INDUCTION

data/observations —>



MACHINE LEARNING

FUZZY MACHINE LEARNING: Learning FUZZY MODELS from CRISP DATA!

10 0.34 0O

12 0.43 1

21 0.82 0 IF xl=high AND x2=low THEN Y=0

15 0.93 0 IF xl=low AND x2=low THEN Y=1

55 0.72 1 IF xl=high AND x2=high THEN Y=1
' IF xl=low AND x2=high THEN Y=0

18 0.82 1

lo 0.02 1

DATA FUZZY RULES



LEARNING FROM FUZZY DATA

____

0.42 0 10.5
12 0.90 1 154 32.6
17 0.61 1 211 55.2
11 0.17 1 423 94.2
28 0.66 0 654 12.6
19 0.93 0 127 37.4
32 0.72 1 336 33.8
15 0.12 0 798 62.5



LEARNING FROM FUZZY DATA

____
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HOW TO ANALYZE AND LEARN FROM SUCH DATA?



TWO INTERPRETATIONS OF A FUZZY SET

The ,,ontic” view (conjunctive interpretation):
— afuzzy set is a real data entity;
— an attribute can assume a fuzzy set as a ,value®, i.e.,

— we have a (fuzzy set)-valued attribute.

EXAMPLE: Duration of sunshine in Vilamoura today.

A

duration
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THE ONTIC VIEW: REMARKS

In line with the general trend of analyzing ,,complex” data
(e.g., interval-valued, histogram-valued, functional, etc.)

Questionable relevance for machine learning/data analysis:

— A systematic collection of fuzzy data of that kind requires a suitable

,measurement device” producing fuzzy sets (membership functions).

— What is the meaning of a membership degree, if not related to frequency
(and hence probability distributions)?



TWO INTERPRETATIONS OF A FUZZY SET

The ,,epistemic” view (disjunctive interpretation):

— The true value of the attribute is precise, and a fuzzy set is used to express
imprecise knowledge about this value (possibility distribution).

middle-
aged
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A FUZZY SET IS NOT THE DATA OBJECT, BUT REPRESENTS
KNOWLEDGE ABOUT THIS OBJECT!



TWO INTERPRETATIONS OF A FUZZY SET

Fuzzy set could be replaced by A further ,precisiation” of the
a precise value on the basis of data is not legitimate.
additional knowledge.



TWO INTERPRETATIONS OF FUZZY DATA

THE TWO INTERPRETATIONS, ONTIC AND EPISTEMIC, CALL FOR VERY
DIFFERENT EXTENSIONS OF METHODS FOR DATA ANALYSIS!
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ANALYZING COMPLEX DATA

The ontic view essentially calls for , lifting” a method to a complex
data space, in which data entities are fuzzy sets, and to extend the
underlying operations correspondingly.

N A °

»,Fuzzy observations” are embedded as points in a (high-dimensional) space
(e.g., a fuzzy metric space).

Special case of structured output prediction, for which kernel-based

learning methods are quite popular (kernels for sequences, graphs, etc.)
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REGRESSION WITH INTERVAL OUTPUTS

interval-valued
observa‘uon

y[[l

J
or——gQ
®

v



REGRESSION WITH INTERVAL OUTPUTS
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Ontic view: Reproducing interval observations by means of an
interval-valued function

F* e argglei% D(Y;, F(x;))
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THE EPISTEMIC VIEW

imprecise
observation

Epistemic view: Solution is a
= fuzzy set of REAL-VALUED regression functions
= instead of a single FUZZY SET-VALUED regression function
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THE EPISTEMIC VIEW

A model is deemed possible if there is a possible set of precise
observations (a SELECTION) for which it is an optimal fit

—> EXTENSION PRINCIPLE (applied to a data analysis method) ?



THE EXTENSION PRINCIPLE

=  The extension principle generalizes a function
f: XixXox...xX,—Y

from ,,crisp” to fuzzy inputs:

f(il?l,ZUQ,.--,ZUn):

NN
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THE EXTENSION PRINCIPLE

= For example, interval arithmetics: [1,5] & [1,3] = [—2, 4]

1 S

All selections of (single-valued) input values are treated the same and
equally contribute to the output!
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THE EXTENSION PRINCIPLE

= Alearning algorithm is a mapping from data to models:
f:D"—>M,d=(dy,...,dp,) — M
= So, the extension now reads as follows:

F(D)(M) = F(D1,...,Dn)(M) =

sup {minDi(di) | f(d) = M}
d=(d1,...,dn) *

Thus, a model is plausible insofar there is a plausible selection of precise
data points supporting that model:

m(M) = sup {un(d) | f(d) = M}

with 1ip(d) = min(Di(d1),. .., Dn(dy)).



THE EXTENSION PRINCIPLE

Questioning the equal treatment of all selections ...

In data analysis, a method inducing a model from a set of data always
comes with certain MODEL ASSUMPTIONS, and under these

assumptions, specific selections may appear more plausible than others!

... to be explained through some simple examples.
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DATA DISAMBIGUATION

MORE PLAUSIBLE LESS PLAUSIBLE
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A plausible selection that can be fitted A less plausible selection, because there
quite well with a LINEAR model! is no LINEAR model with a good fit!
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DATA DISAMBIGUATION

Wl

Adding non-informative data will have an
influence on the plausibility of models!
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DATA DISAMBIGUATION

Adding non-informative data will have an
influence on the plausibility of models!
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DATA DISAMBIGUATION
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A single (imprecise) observation doesn‘t tell us very much ...



DATA DISAMBIGUATION

by
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... and neither does a set of them.

v
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DATA DISAMBIGUATION
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Yet, when looking at the data AS A WHOLE, and taking into account the
RELATION BETWEEN THEM, some possible values become impossible!

—> constraint propagation
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DATA DISAMBIGUATION
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Yet, when looking at the data AS A WHOLE, and taking into account the
RELATION BETWEEN THEM, some possible values become impossible!

v

—> constraint propagation
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DATA DISAMBIGUATION
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Yet, when looking at the data AS A WHOLE, and taking into account the
RELATION BETWEEN THEM, some possible values become impossible!

—> constraint propagation
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DATA DISAMBIGUATION IN CLUSTERING

Imprecise x-values modeled as intervals.




DATA DISAMBIGUATION IN CLUSTERING

Imprecise x-values modeled as intervals.
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DATA DISAMBIGUATION IN CLUSTERING

lll

Scenario ,,red“ more likely than ,blue
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The red scenario (two clusters) appears to be more plausible

than the blue one (three clusters)!
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DATA DISAMBIGUATION IN CLASSIFICATION

The class of the red training points is not known.
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DATA DISAMBIGUATION IN CLASSIFICATION

This scenario allows one to fit a very simple decision tree, while
other scenarios call for more complex models.
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DATA DISAMBIGUATION IN CLASSIFICATION

This scenario allows one to fit a very simple decision tree, while
other scenarios call for more complex models.
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Looking at the data from the point of view of a decision tree
learner, the former scenario appears more likely than the latter.
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DATA DISAMBIGUATION IN CLASSIFICATION

The same does not necessarily hold under
different model assumptions !
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It all depends on how you look at the data!



DATA DISAMBIGUATION

Under the epistemic view, model identification and data disambiguation
should be performed simultaneously:

identification

_ DATA 2B

disambiguation

The loss minimization approach ...
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THE EMPIRICAL RISK MINIMIZATION PRINCIPLE

Many (supervised) learning methods are based on minimization of the
empirical risk

N
1
Remp(M) — N Z L(yza M(wz))
1=1
or a regularized version thereof:
1 N
Ryeg(M) = ~ ; L(yi, M(x;)) + A\C(M)
\ ] |\ J
| |
average loss on complexity term to

training data prevent overfitting
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GENERALIZED EMPIRICAL RISK MINIMIZATION

Consider an imprecise observation (x,Y) and let §y = M (x).
How much should M be penalized for this prediction?

In agreement with the idea of data disambiguation, we look at the
smallest possible loss, namely

L*(Y,9) = min{ L(y,9) |y €Y } ,
and the value for which it is obtained:

y* = argmin{L(y,g)Hy C Y} .

Given the model M, this value appears to be the most plausible in Y.
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GENERALIZED EMPIRICAL RISK MINIMIZATION

On the basis of the generalized loss function L*, we define

Remp(M) = %ZL*(Y;-,M(:B%-)) .

]

how well the ,,crisp” model
fits the imprecise data
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GENERALIZED LOSS FUNCTION: THE INTERVAL CASE

generalized

Note similarity to
eps-insensitive
loss in support
vector regression
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GENERALIZATION TO THE CASE OF FUZ22Y DATA
1
L(Y,7) :/0 L*([Y]a,9) da LOSS

Remp(M) = NZE(Yi,M(CUO) RISK
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FUZZIFICATION OF L1 LOSS
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- close connection to Huber loss!
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FUZZIFICATION OF L1 LOSS

10

—> overestimation is worse than underestimation!
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MARGIN LOSSES

Let Y = {—1,41} and consider a class of scoring classifiers M : X — R.

A margin loss is a function of the form

L(y,s) = f(ys) ,

where f : R — R is a non-increasing function.

3
0/1 loss
250
2f
1.5¢
1
0.5¢ _
%
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MARGIN LOSSES

Let Y = {—1,+1} and consider a class of scoring classifiers M : X — R.

A margin loss is a function of the form

L(y,s) = f(ys) ,

where f : R — R is a non-increasing function.

Hinge loss:
L(y,s) = max (1 —ys,0)

Log-loss:

L(y,s) = log (1 +exp (— ys))

Exponential loss:
L(y,s) = exp ( — s)
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FUZZY MARGIN LOSSES

Suppose the output is a fuzzy subset Y with membership degrees

B 1 f A=y
py (A) = { l—w fA=gy

where y,y € {—1,+1} such that yg = —1, and w can be interpreted as a
degree of confidence in y.
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FUZZY MARGIN LOSSES

Suppose the output is a fuzzy subset Y with membership degrees

B 1 f A=y
py(A) = { l—w ifA=gy

where y,y € {—1,+1} such that yy = —1, and w can be interpreted as a
degree of confidence in y.

Then, the fuzzy loss function is given by

L(Y,s) = fu(ys) =w- f(ys) + (1 —w)- f(lys]) -
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FUZZY MARGIN LOSSES
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HINGE LOSS
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FUZZY MARGIN LOSSES

LOG-LOSS
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AN ILLUSTRATION
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Two classes, both normally distributed, sample size 200.



FIRST EXPERIMENT

= (Class information was partly removed from the training instances.

= More specifically, each of the 200 instances was declared
,unlabeled” with a fixed probability ~y .

= Thus, we are in a semi-supervised setting, in which approximately
200(1-v) of the instances are labeled.
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FIRST EXPERIMENT

= (Class information was partly removed from the training instances.

= More specifically, each of the 200 instances was declared
,unlabeled” with a fixed probability ~y .

= Thus, we are in a semi-supervised setting, in which approximately
200(1-v) of the instances are labeled.

= |n our approach, the unlabeled instances 1’2___
are considered as being labeled with the
fuzzy set that assigns a membership degree
of 1 to both the positive and the negative class. 0 1 +1

= Then, a model is trained using the fuzzy log-loss.

= Standard logistic regression is used for comparison.
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FIRST EXPERIMENT
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SECOND EXPERIMENT

" The label of each example is switched with a fixed probability ~y .

= This noise level is supposed to be known, whereas for each individual
training example, it is not known whether the observed label corresponds
to the original one or has been switched.
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SECOND EXPERIMENT

The label of each example is switched with a fixed probability .

= This noise level is supposed to be known, whereas for each individual
training example, it is not known whether the observed label corresponds
to the original one or has been switched.

= We model the label information in terms of a fuzzy set with a membership
degree of 1 to the observed and of «y to the other label.

= Standard logistic regression simply uses the observed label information,
which is the best it can do.
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SECOND EXPERIMENT
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LABEL RANKING

... mapping instances to TOTAL ORDERS over a fixed set of alternatives/labels:

H H
instance x € X ranking of labels/alternatives

(e.g., features of a person) Y= {y1,y2, e ,yk}
y={AB,C,...}
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LABEL RANKING: TRAINING DATA

TRAINING

ENECEEN

0.34 0 10 IV A - B C>=D
Instances are
1.45 0 32 277 Re associated with
1.22 1 46 ’VSSl B - D A>-D,C~D,A~C pairwise
preferences
0.74 1 25 165 C-A,C~D,A>~B between labels
0.95 1 72 273 B>~D,A>D
1.04 0 33 A A - B, A~ C

— rank of A between 1 and 2
— rank of B between 2 and 4
— rank of C between 2 and 4
— rank of D between 1 and 4
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LABEL RANKING

complete ranking 30% missing labels 60% missing labels
LWD PL LWD PL LWD PL
authorship | .933+.016 936+.015 | .925=.018 .833+.030 | 391+.021 .601+.054
glass 840+.075 8414067 | .819+.078 .669+£.064 | 721+.072 .395+.068
iris 960+.036 960+.036 | .932+.051 .896+.069 | .876+.068 .T87+.111
pendigits | .940+.002 939+.002 | .924+.002 .770+.004 | .709+.005 4344007
segment 953+.006  .950+.005 | .914+.009 710013 | .624+.020 .381+.020
vehicle 853+.031 .859+.028 | .836+.032 .753+.032 | .767+.037 .520+.050
vowel 876+.021  851+.020 | .821+.022 .612+.027 | .536+.034 .327+.033
wine 938+.050 .947+.047 | .933+.054 .919+.059 | .921+.062 .863+.094
authorship | .933+.016  936+.015 | .932=.017 .92/=017 | 923+.015 .886+.022
glass 840+.075 8414067 | .838+.074 .809+.066 | .815+.075 .675+.069
iris 960+.036  960+.036 | .956+.036 .926+.051 | .932+.048 .868+.070
pendigits | .940+.002 939+.002 | .933+.002 918002 | .837+.004 .794+.004
segment 953+.006  950+.005 | .943+.005 .874+.008 | .844+.010 .674+.015
vehicle .853+.031 .859+.028 | .851+.033 .838+.030 | .818+.032 .765+.035
vowel 876+.021  851+.020 | .867+.021 .785+.020 | .800+.021 .588+.024
wine 938+.050  947+.047 | .936+.049 .926+.061 | .930+.059 .907+.066

Performance in terms of Kendall's tau on synthetic data: missing-at-random (above) and top-rank setting (below).
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SUMMARY AND CONCLUSION

= Learning from fuzzy data is gaining increasing attention.

= Different interpretations of fuzzy data exist and suggest different ways of
extending machine learning and data analysis methods:

ontic interpretation — data reproduction
epistemic interpretation = data disambiguation (extension-principle)

= We proposed a method based on generalized (fuzzy) loss functions and
risk minimization: A fuzzy set properly ,,modulates” the loss associated
with an individual observation = data modeling

= Our framework covers several existing approaches as special cases (Huber
loss, instance weighting, semi-supervised learning), but also supports the
systematic development of new methods.
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Data Disambiguation through Generalized Loss Minimization.
International Journal of Approximate Reasoning (to appear).

Preprint version: arXiv:1305.0698



