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Intelligence Analysis: Background

� Intelligence analysis aims 
to recognize a threat from 
collected intelligence and 
evidence

A successful analysis can � A successful analysis can 
help minimizing damages

� It may even prevent 
revolting consequences

� 9-11 terrorist attack

� 7-7 London bombing



Intelligence Analysis: Problems

� Intelligence experts have agreed 
that

� Failure in detecting a threat is not 
due to lack of intelligence data

� But, due to difficulties in relating 

and interpreting the available and interpreting the available 

data

� Overwhelming amount of 

intelligence for human 

examination

� Time pressure and subjective 

interpretation

� Computational intelligence 
techniques can help



Intelligence Analysis: Compositional Modelling

Intelligence

Plausible Relevant 
States and Events
Alternative 
scenarios, i.e. 
explanations to 
intelligence, with 
different 
possibilities



Intelligence Analysis: Plausible Scenarios

� Situation awareness

� How available intelligence is 

related and represents a threat

� Plausible scenario modelling 

� Hypothetical (re-)construction of 
prepare_liquid_bomb

(Binladen) = true

amount_of
(Hair_dyes) = ‘a lot’

∧∧∧∧

explosive_materials
(Hair_dyes, Coke) = true

� Hypothetical (re-)construction of 

possible scenarios, given evidence 

and generic knowledge 

components

� Decision support for

� Risk assessment

� Evidence evaluation

� Information fusion

� Conflict resolution

Evidence ConsequenceAssumptionNotation:

(Binladen) = true

seen_with
(Binladen, Coke, Hair_dyes) = true

possess
(Binladen, Coke, Hair_dyes) = true



Plausible Scenario-Based DSS

Intelligence
Data

Scenario 
Generation

Intelligence Collection 

DecisionScenario AData
Generation

Generic Scenario
Fragments

Decision Support System

Intelligence Data
Analyst

DecisionScenario A

Scenario Space
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Focused Approaches
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Fuzzy Learning: Model Fragments

� Fuzzy modelling

� Turning data into machine-usable and 

human-comprehensible knowledge

� Use of fuzzy sets to handle imprecise 

and ill-defined information C1

Chance of liquid bomb

� Precise approach

� Each fragment may have its own term 

set created from data

� Accurate and efficient, but opaque

If volume is Tri(32.41, 38.12, 49.18)

Then chance is Tri(0.22, 0.45, 0.78)

V1 V2

C2

Volume of hydrogen-peroxide



Fuzzy Learning: Model Fragments

� Linguistic approach

� All fragments use predefined, 

linguistically labelled term set

� Transparent, but less accurate 

and slow learning

Chance of liquid bomb

M
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m

H
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and slow learning

If volume is Few

Then chance is Low

If volume is Moderate

Then chance is High
Volume of hydrogen-peroxide

Few

L
o
w

M
e
d
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Moderate A Lot



Fuzzy Learning: Indirect Modelling

� Generate precise models by 

any standard precise method

� Translate precise to linguistic 

models using multi-objective 

optimisation (e.g. GAs, ACO)

Fragment
Induction

Model Precise to 

Precise Fuzzy
Model

Precise

optimisation (e.g. GAs, ACO)

� Overcome fixed grid ‘grain’ 

problem using linguistic 

hedges (aka. fuzzy quantifiers)

� Applicable to both models and 

model fragments

Model
Tuning

Precise to 
Linguistic
Conversion

Fragment
Induction

Fuzzy Linguistic
Model

Data

Linguistic



Feature Selection

� Semantics-preserving 

dimensionality reduction

� To make acquisition process more 

‘efficient’ with reduced complexity

Infeasible & inefficient
learning

High dimensionality
& noise

� To improve the ‘quality’ of 

knowledge, by removing noise and 

irrelevant data

� Variety of application 

domains

Low dimensionality & 
preserved semantics

Feature 
selection

Efficient & effective
learning

Learning
Model



Feature Selection: Framework

� Subset generation

� Searches forwards, backwards, 

stochastically …

� Evaluation function Generation Evaluation
Subset

Feature set

� Evaluation function

� Determines ‘goodness’ of subsets

� Stopping criterion

� Decides when to stop subset 

search

Generation Evaluation

Stopping
Criterion

Subset
suitability

Continue

Stop

Feature subset(s)



Fuzzy-Rough Feature Selection

� Extend rough-set approach via fuzzy sets 

� Fuzzy lower approximation:
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Fuzzy-Rough Feature Selection: Algorithm

� Subset generation

� Greedy hill-climbing

� ‘Goodness’ evaluation

� Fuzzy-rough dependency metric

FRQuickReduct(C,D)
C, the set of all conditional features;
D, the set of decision features.

(1)   R← {}
(2)   do� Fuzzy-rough dependency metric

� Stopping criterion

� When no improvement in 

subset quality

(2)   do
(3)      T ← R
(4)     
(5)     
(6)           if
(7)                 T ←
(8)                
(9)          R ← T
(10) until
(11)  return R

bestprev γγ =

)()(}{ DD TxR γγ >∪

}{xR ∪
)(DTbest γγ =

prevbest γγ ==

)( RCx −∈∀
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Interpolative Reasoning

� To achieve approximate 

inference with a ‘sparse’ or 

‘incomplete’ knowledge base

Rulei: frequency is None � attack is Unlikely

Frequency

� Also useful to simplify knowledge 

bases by approximating 

fragments with their neighbours

Rulei: frequency is None � attack is Unlikely
Rulej: frequency is Often � attack is Likely
Observation: frequency is Few

Question:  Will there be an attack?

None Few Often

Target surveillance

Pr (Target attack)

µ

Unlikely Likely



Fuzzy Interpolation: 
Similarity-Based  Approach

Intermediate
inference rule

None � No Often � Yes

Rule base

Creation of intermediate inference 
rule via linear interpolation, guided 
by observation A*

inference rule

A  � B

Scale & move
transformation

A*� B*

Derivation of conclusion via scale 
and move transformations, ensuring 
similarity



Fuzzy Interpolation: Intermediate Rule

� Guided by representative value of observation A*; Rep(A') = Rep(A*)

u

A2
A1 A*

A'

0 X

u

0 Y

A'

B'B1 B2

Rep(A') = Rep(A*)

Rep(B*)=Rep(B') 



Fuzzy Interpolation: Scale Transformation

u

A2
A1 A

A"

� Inferring by scale transformation

0 X

u

0 Y

B"B1 B2

Rep(A*)

Rep(B*)



Fuzzy Interpolation: Move Transformation

u

A2
A1 A*

� Inferring by move transformation

0 X

u

0 Y

B*B1 B2

Rep(A*)

Rep(B*)
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Risk Assessment

� Risk assessment is employed to 

‘differentiate’ and ‘prioritize’ 

identified scenarios

� Counter measures, including � Counter measures, including 

further evidence gathering, can 

be efficiently deployed

� Estimating the risk of a plausible 

event requires dealing with 

‘randomness and fuzziness’



Risk Assessment: Loss

� Plausible occurrence of an event is 

considered ‘random’

� Losses by such an event are judged 

linguistically and expressed as linguistically and expressed as 

values of ‘fuzzy random variables’

� Loss

� Damages to property or business

� Number of casualties (actual human 

cost cannot be measured)



Risk Assessment: Fuzzy Loss

� Loss caused by an event is 
represented as a function     
ξ : Ω → ℑ


 =

=
}{,

)(
SuccessPns ω

ωξ

Order-of-Magnitude of Loss

� Ω = {Success, Failure} is a 
sample space of plausible events

� ns, nf ∈ ℑ, which is a set of 
nonnegative fuzzy variables



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=
=
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ωξ
Bombing event

Geometric coverage of event



Risk Assessment: Fuzzy Risk

� Estimated as mean chance 

of a fuzzy random event 

over a confidence level x,

for an individual type of 

Damage
Intensity

Geometric
Coverage

Types of
Building

for an individual type of 

loss:

� Risk aggregation

� Other assessment criteria

}{)( xChxRisk ≥= ξ

Time of
Incident

Number of
Residents

HL
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Illustration: Intelligence Data

Hydrogen-
peroxide Vol.

Observed 
Time

Observed 
Location

Suspect 
Gender

Liquid
Bomb

100 ml 12:45 airport Male YES

113 ml 08:50 airport Male YES

Collected intelligence – preparation of ‘liquid bomb’

113 ml 08:50 airport Male YES

10 ml 13:01 airport Male NO

140 ml 20:38 airport Female YES

20 ml 09:23 airport Female NO

... ... ... ... ...



Illustration: Feature Selection

Hydrogen-
peroxide Vol.

Observed 
Time

Observed 
Location

Suspect 
Gender

Liquid
Bomb

100 ml 12:45 airport Male YES

113 ml 08:50 airport Male YES

Remove ‘irrelevant’ data and noise

113 ml 08:50 airport Male YES

10 ml 13:01 airport Male NO

140 ml 20:38 airport Female YES

20 ml 09:23 airport Female NO

... ... ... ... ...



Illustration: Rule Learning

Hydrogen-
peroxide Vol.

Liquid
Bomb

100 ml YES

113 ml YES

µ

Volume0
20 100

?

Few A Lot

10 ml NO

140 ml YES

20 ml NO

... ...

µ

Liquid bomb
threat

0

0

20 100

0.25 0.75

?

YESNO



Illustration: Interpolative Reasoning

µ

Volume0
20 100

Few A LotA
Rule1: Volume = Few � Threat = NO

Rule2: Volume = A Lot � Threat = YES

Observation: Volume = A

Question: What may be Threat level?

µ

Liquid bomb
threat

0

0

20 100

0.25 0.75

YESNO B

Question: What may be Threat level?

Approximation: Threat = B



Illustration: Scenario Synthesis

Evidence

Consequence

Assumption

Notation

prepare_liquid_bomb
(Person P) = true

amount_of
(Substance X) = ‘a lot’

∧∧∧∧

explosive_materials
(Substance X, Hydrogen-peroxide) = true

(Person P) = true

seen_with
(Person P, Substance X) = true

possess
(Person P, Substance X) = true

Model Fragments & Compositional Modelling Algorithms



Illustration: Risk Assessment



Conclusion

� Computational intelligence in general, and fuzzy systems in 
particular helpful to capture, learn & reason with (intelligence data 
under) uncertainty

� Evidence-driven plausible scenario synthesis helpful for decision 
support (in intelligence monitoring) 

� Fuzzy techniques successful (within a common decision support 
framework) for: 

� However, important research remains ...

� Fragment induction
� Feature selection
� Interpolative reasoning
� Model composition
� Constraint satisfaction

� Truth maintenance
� Co-reference resolution
� Information aggregation
� Evidence evaluation
� Risk assessment



Future Research and Challenges

� Learning hierarchical model fragments

� Hierarchical & ensemble feature selection

� Unification of scenario generation algorithms

� Dynamic coreference resolution & information fusion

� Evidence-driven risk-guided scenario generation

� Reconstruction of reasoning process� Reconstruction of reasoning process

� Discovery of rare cases

� Meta-feature learning and selection for scenario synthesis

� ...

� Further applications
� Investigator training

� Policy formulating

� Multi-modal profiling

� Adaptation to other domains (e.g. academic, financial)

� ...
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