LANGUAGE, COGNITION, AND CULTURAL EVOLUTION

ICFC Conference 5-7 Oct 2009, Madeira, Portugal

Leonid Perlovsky
Harvard University and the AF Research Lab
http://leonid-perlovsky.com/

OUTLINE

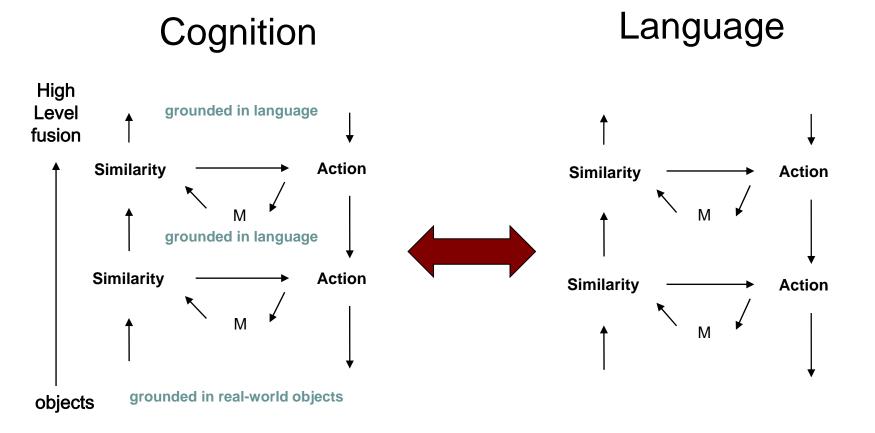
- Language and Cognition
- Computational Complexity
- Dynamic Logic
 - Engineering example: recognition
- The Knowledge Instinct
 - Higher cognitive functions: beautiful, sublime
- Language and Emotion: Evolution of cultures
 - Emotional Sapir-Whorf Hypothesis

INTEGRATED LANGUAGE AND COGNITION

How language and cognition interact

- Words and objects: zillions of combinations, how do we learn correct ones?
- Each concept has linguistic and cognitive dual model
- $\mathbf{M}_{m} = \{ \mathbf{M}_{m}^{\text{cognitive}}, \mathbf{M}_{m}^{\text{language}} \};$
- Language and cognition are fused at vague pre-conceptual level
 - before words and concepts are learned

Language and cognition mechanisms


- In a new-born mind, concept-models are dual fuzzy blobs
- Language is learned "ready-made" from surrounding language
- Language models have empty "slots" for cognitive model (objects and situations)
- Cognitive concepts are learned to match language models

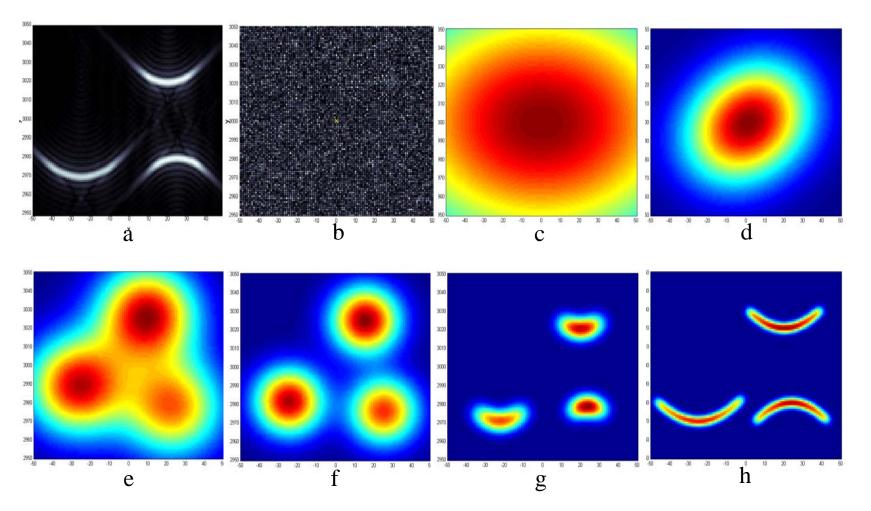
INTEGRATED HIERARCHIES

High level cognition is only possible due to language

COMPUTATIONAL COMPLEXITY

- Cognition and language involve evaluating large numbers of combinations
 - Pixels -> objects -> scenes
 - Sounds -> words -> phrases
- Combinatorial Complexity (CC)
 - A general problem (since the 1950s)
 - Detection, recognition, tracking... language...
 - Pattern recognition, neural networks, rule systems...
- Combinations of 100 elements are 100¹⁰⁰
 - This number > the size of the Universe
 - > all the events in the Universe during its entire life

DYNAMIC LOGIC (DL)



- DL unifies formal and fuzzy logic
 - A process-logic "from fuzzy to crisp"
- Maximizes similarity between models and signals
- Overcomes CC -> fast algorithms
- Proven in neuroimaging experiments (Bar, 2006)
 - Initial representations-memories are vague-fuzzy
 - "close-eyes" experiment

EXAMPLE: RECOGNITION DL "from vague to crisp"

Signal / Clutter ratio ~ 100 times improvement

APPLICATIONS

- Data mining
- Inverse problems
- Financial predictions
- Search engines understanding language
- Proven in neuroimaging experiments (Bar, 2006)
 - Initial representations-memories are vague-fuzzy
 - "close-eyes" experiment

ARISTOTLE VS. GÖDEL

Aristotle

- Logic: a supreme way of argument
- Forms: representations in the mind
 - Form-as-potentiality evolves into form-as-actuality
 - Potentialities are not logical -> logical actualities, (Dynamic Logic)
- Language and thinking are closely linked

From Boole to Russell: formalization of logic

- Logicians eliminated from logic uncertainty of language
- Hilbert: formalize rules of mathematical proofs forever

Gödel (the 1930s)

- Logic is not consistent
 - Any statement can be proved true and false
- Aristotle and Alexander the Great

RECOGNITION

- 2007 Gabor Award
 - The top engineering award from International Neural Network Society (INNS)
- 2007 John L. McLucas Award
 - The top scientific award from the US Air Force
- 2000 Best Paper Award, Zvezda, Russian literary and philosophical essay monthly journal
- Elected to the Board of Governors of INNS
- Invited to Editorial Boards of 6 journals

OUTLINE

- Language and Cognition
- Computational Complexity
- Dynamic Logic
 - Engineering example: recognition
- The Knowledge Instinct
 - Higher cognitive functions: beautiful, sublime
- Language and Emotion: Evolution of cultures
 - Emotional Sapir-Whorf Hypothesis

THE MIND, KNOWLEDGE INSTINCT

Mechanisms of the mind:

- Instincts, Emotions, Concepts, Behavior, Hierarchy
 - > Emotions indicate satisfaction of instinctual needs
- Described mathematically
 - > concepts=models

The knowledge instinct (KI)

- Concept-models always have to be adapted
- Increase similarity between models and the world
- Emotions: satisfaction of instincts
- Aesthetic emotions: satisfaction of KI
 - harmony between concepts and the world

BIBLE, NOBEL PRIZE, LANGUAGE

Why Adam expelled from paradise?

- Did not want to think (true-false)
- Choose ready-made rules (good-bad, Maimonides, 13th c.)

Nobel Prize 2002, Kahneman (and Tversky)

- Decisions are basically irrational
- Not KI, but rules-heuristics
- KI-cortex (OFC), rules-amygdala (DL &LP)

Language vs. irrational-rules

- Language contains wealth of cultural knowledge, rules
- Remember: opened eyes hide vague mental images
- Similarly language hide vague abstract concepts

EVOLUTION OF CULTURES

- The knowledge instinct
 - Two mechanisms: differentiation and synthesis
- Differentiation
 - At every level of the hierarchy: more detailed concepts
 - Separates concepts from emotions
- Synthesis
 - Connects concepts and emotions (knowledge and life)
 - Connects language and cognition
 - Created in the hierarchy: concepts acquire meaning at the next level
- Evolutionary dynamics
 - Complex interaction of opposing mechanisms

16-Sep-05

CULTURE AND LANGUAGE

- Culture is transmitted through language
- Examine mechanisms of
 - Language and cognition
 - Language and emotion

EMOTIONAL SAPIR-WHORF HYPOTHESIS

- Language affects thinking and behavior
 - Bhartrihari 5th CE (India), Humboldt 1836, Nietzsche 1876
 - Benjamin Whorf and Edward Sapir in the 1930s
 - > E.g., people better perceive colors, which have words in their language
- Recent history
 - "Out of favor." Chomsky separated language and cognition
 - Recent resurgence of interest
- We have to understand cultural differences
 - "European" thinking is not the only way
- Emotional differences are no less important than semantical

EMOTIONS IN INTEGRATED HIERARCHIES

- Look top-down: differentiation, more detailed concept-models, less emotions
- Look bottom-up: synthesis, unifying general models, more emotions
- At the top: meaning and purpose, emotions of the beautiful and sublime

Language Cognition more grounded in language emotions meaning **Similarity Action Similarity** Action grounded in language **Similarity** Action **Similarity Synthesis Action** emotions less grounded in real-world objects objects emotions

EMOTIONS IN LANGUAGES

Animals

- Undifferentiated concepts-emotions-behaviors-vocalization
- Vocal tract is controlled from ancient emotional limbic system
- Human language evolution
- Language evolved toward semantics and less emotions
- Still emotions are needed, otherwise, no synthesis, no meaning
- Two emotional centers: limbic (involuntary) and cortex (conscious)
- Emotionality: in voice sound (melody of speech)
- Emotional differences among languages
- All languages evolved toward less emotionality
- More semantic flexibility, but potential to lose meanings
- "Too fast" evolution => lose meaning
- "Too slow" evolution => culture stagnates
- Speed is determined by grammar, by inflections

16-Sep-05

LANGUAGE EMOTIONS AND CULTURES

- Conceptual content of culture: words, phrases
 Easily borrowed among cultures
- Emotional content of culture
 In voice sound (melody of speech)

Determined by grammar

Cannot be borrowed among cultures

- English language (Diff. > Synthesis)
 - Weak connection between conceptual and emotional (since 15 c) Pragmatic, high culture, but may lead to crises (lost meaning)
- Arabic language (Synthesis > Diff.)

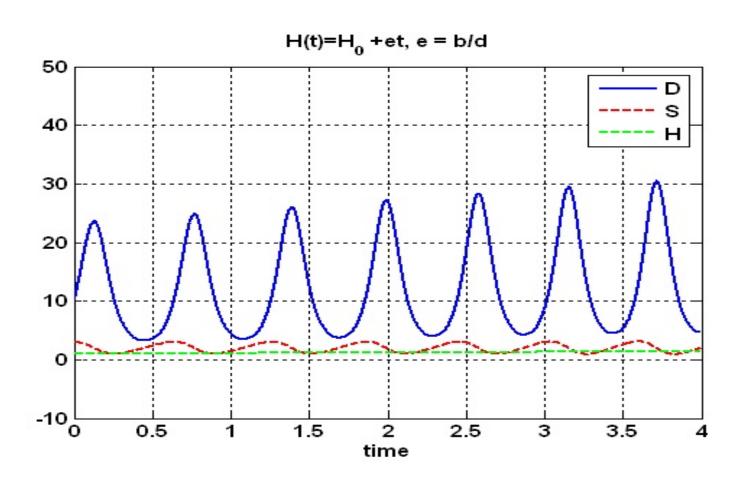
Strong connection between conceptual and emotional Cultural immobility, but strong feel of identity and purpose

16-Sep-05

MODELS OF CULTURAL EVOLUTION

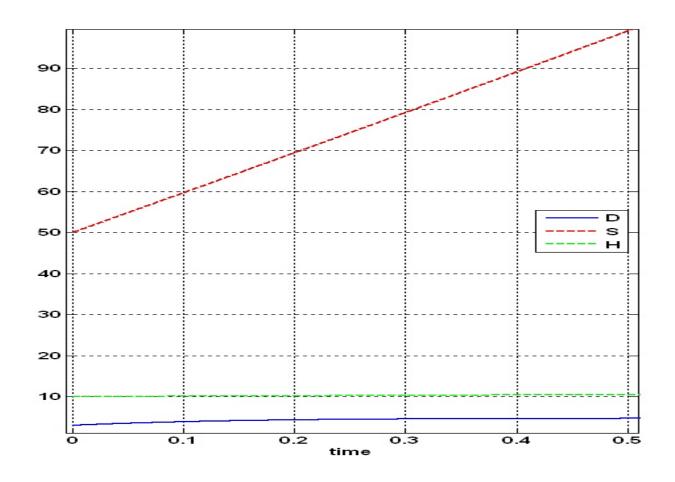
 Differentiation, D, synthesis, S, hierarchy, H

$$dD/dt = a D G(S); G(S) = (S - S0) exp(-(S-S0) / S1)$$


$$dS/dt = -bD + dH$$

$$H = H0 + e^*t$$

DYNAMIC CULTURE



Average synthesis, high differentiation; oscillating solution Knowledge accumulates; no stability

TRADITIONAL CULTURE

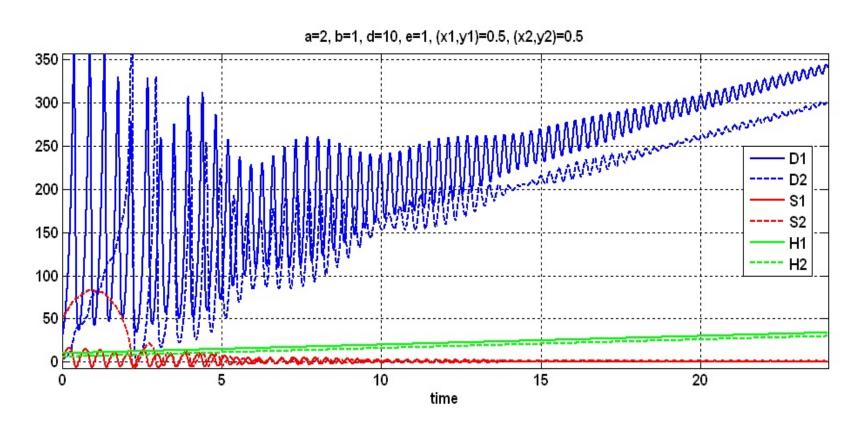
High synthesis, low differentiation; stable solution Stagnation, stability increases

INTERACTING CULTURES

Two cultures

- dynamic and traditional
- slow exchange by D and S

$$dD_k/dt = a_k D_k G(S_k) + x_k D_k$$


$$dS_k/dt = -b_k D_k + d_k H_k + y_k S_k$$

$$H_k = H0_k + e_k^*t$$

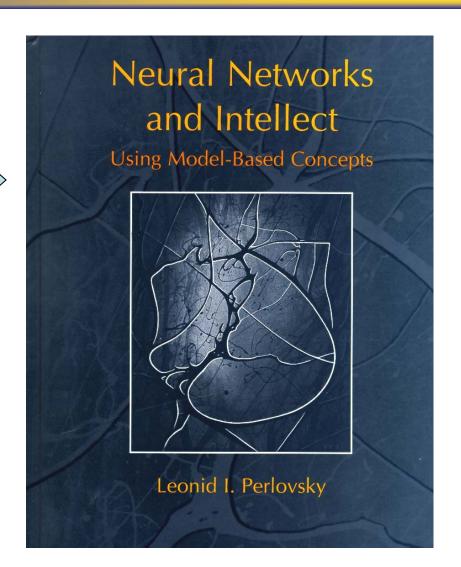
INTERACTING CULTURES

- 1) Early: Dynamic culture affects traditional culture, no reciprocity
- 2) Later: 2 dynamic cultures stabilize each other

PUBLICATIONS

330 publications

3 books


OXFORD UNIVERSITY PRESS (2001; 3rd printing)

Neurodynamics of High Cognitive Functions with Prof. Kozma, Springer, 2007

Sapient Systems with Prof. Mayorga, Springer, 2007

2010:

Dynamic Logic, Springer
The Knowledge Instinct, Yale
University Press

FUTURE DIRECTIONS

research, predictions and testing

Improve human condition and understanding around the globe

Develop predictive cultural models, integrate spiritual and material causes, measure D, S, H Identify language and music effects that can advance consciousness and reduce tensions

Mathematical development

KI in the hierarchy, detailed models synthesis, combine with language and emotions Multi-agent simulations

Psycholinguistic experiments

Measure emotionality of various languages in labs

Music: theoretical and experimental

Direct effect on emotions, mechanisms of synthesis Concurrent evolution of music, consciousness, and cultures

Brain imaging

Brain regions used by different cultures, languages, music Neural mechanisms connecting language and cognition

Semantic Web and Cyberspace

Adaptive ontologies

Learn from human users, acquire cultural knowledge

Enable culturally-sensitive communication

Help us understand each other and ourselves

BACK-UP

- Structure of the mind
- Neural Modeling Fields
- Dynamic logic
- Neuro-imaging experimental confirmation
- Beautiful and sublime

16-Sep-05

STRUCTURE OF THE MIND

Concepts

- Models of objects, their relations, and situations
- Evolved to satisfy instincts

Instincts

Internal sensors (e.g. sugar level in blood)

Emotions

- Neural signals connecting instincts and concepts
 - e.g. a hungry person sees food all around

Behavior

Models of goals (desires) and muscle-movement...

Hierarchy

Concept-models and behavior-models are organized in a "loose" hierarchy

NEURAL MODELING FIELDS

from signals to concepts

- Bottom-up signals
 - Pixels or samples (from sensor or retina)x(n), n = 1,...,N
- Top-down concept-models

$$\mathbf{M}_{m}(\mathbf{S}_{m},\mathbf{n})$$
, parameters \mathbf{S}_{m} , $\mathbf{m} = 1, ...;$

- Models predict expected signals from objects
- The knowledge instinct = maximize similarity between signals and models

$$L = \ell(\{\mathbf{x}\}) = \prod_{n} \sum_{m} \ell(\mathbf{x}(n) \mid \mathbf{M}_{m})$$

- M^N items: all associations of pixels and models (=>CC)
- New mathematical technique, DL, overcame this difficulty

DYNAMIC LOGIC (DL) non-combinatorial max of knowledge

Start with a set of signals and unknown object-models

- any parameter values S_m
- associate models with signals (vague)
- $-(1) \quad f(m|n) = r(m) \ \ell(n|m) \ / \sum_{n} r(m') \ \ell(n|m')$
- Improve parameter estimation

- (2)
$$\mathbf{S}_{m} = \mathbf{S}_{m} + \alpha \sum_{n} f(m|n) \left[\frac{\partial \ln \ell(n|m)}{\partial \mathbf{M}_{m}} \right]^{*} \left[\frac{\partial \mathbf{M}_{m}}{\partial \mathbf{S}_{m}} \right]$$

- Continue iterations (1)-(2). Theorem: MF is a converging system (from vague to crisp)
 - similarity increases on each iteration
 - aesthetic emotion is positive during learning

DL AND BRAIN IMAGING

- Neuro-imaging experiments proved that the brain works as predicted by dynamic logic
- Bar et al (2006), Harvard University proved
 - Bottom-up signals (from eye retina) interact with top-down signals (from memory-models)
 - Initial top-down signals are vague
 - These interactions are unconscious
- Barsalou et al (2006), Emory University proved
 - Distributed vague representations in the mind

16-Sep-05

BEAUTIFUL AND SUBLIME

- The highest aesthetic emotion, beautiful
 - improvement of the highest models (at the top of the hierarchy)
 - feel emotion of beautiful
- Beautiful "reminds" us of our purposiveness
 - the "top" model unifies all our knowledge
 - vague
 - we perceive it as our purpose ("aimless purposiveness")
- Beauty is separate from sex
 - sex uses all our abilities, including beauty
- Religiously sublime is related to behavior